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1 What is nonparametric statistic all about?

In undergraduate statistics class, you might have learnt some “nonparametric statistical methods”,
such as permutation test, Wilcoxon rank sum and signed rank tests, and even bootstrapping. These
are not the kind of nonparametric statistics we are going to cover in this class. To be pedagogical,
they should be called “distribution-free statistical methods”.

“Nonparametric statistics” in our class are about testing hypotheses, estimating parameters and
making statistical inference on parameters θ when the parameter space Θ is an infinite-dimensional
space. This is in contrast to the classical parametric statistics we talked about in the past months.

Another way of thinking about nonparametric statistics is through “optimal rate of conver-
gence”. Usually, we call a parameter θ

√
n-estimable if there exists an estimator θ̂ such that

θ̂ = θ + Op(n
−1/2) or

√
n(θ̂ − θ) = Op(1). Note that “

√
n-estimable” does not require the Op(1)

quantity to be centered normal. In this case, we say θ has parametric behavior (parametric rate).
Otherwise, we say θ has nonparametric behavior (nonparametric rate). So in this sense, high-
dimensional linear regression can be viewed as a nonparametric problem, even though the model
itself is parametric linear.

2 Typical models in nonparametric statistics

There are three toy models that people often use as a first step of investigation when they study
nonparametric statistics.

1. Density estimation: Given i.i.d. data X1, · · · , Xn drawn from some common probability
distribution Pf with probability density function f with respect to the Lebesgue measure.
The goal is to testing hypotheses of, estimating or making statistical inference on f , where
f ∈ F and F is a function space of infinite dimensions.

2. Nonparametric regression: Given i.i.d. data (X1, Y1), · · · , (Xn, Yn) such that Yi = f(Xi)+ ϵi,
where ϵi ∼ N(0, σ2) or more generally

Eϵi = 0,Eϵ2i <∞.

The goal is to testing hypotheses of, estimating or making statistical inference on f , where
f ∈ F and F is a function space of infinite dimensions.
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3. White noise model: Observe one sample path dY (t) = f(t)dt +
1√
n
dW (t), t ∈ [0, 1] and W

is standard Wiener process on [0, 1]. Again, the goal is to testing hypotheses of, estimating
or making statistical inference on f , where f ∈ F and F is a function space of infinite
dimensions.

Remark 1. They are not the only models that people study in research.

In ?, in Theorem 1.2.1, they proved that when F = H(α;C) (Hölder ball), with α > 1/2, the
Le Cam distances between any two of the above three models are asymptotically zero, that is, they
are asymptotically equivalent as statistical experiments. There are many theorems in statistics that
have such flavor: e.g. asymptotic equivalence between ergodic diffusions and Gaussian experiments.

3 Common infinite-dimensional statistical models: function spaces
and approximation theory

In this class, we focus on infinite-dimensional function spaces as the examples of infinite-dimensional
statistical models. Therefore, as a preparatory lecture, we need to cover some basic results in func-
tion spaces and the approximation theory in function spaces. In general, functions are quantified
via smoothness/sparsity. The more smooth the function f is, the faster the rate of convergence
should be. Recently, there is a new attempt of defining function spaces through answering the
following question: what functions can be learnt efficiently by neural networks? This philosophy
leads to the so-called Barron space and the compositional Barron space [??], and we will cover
them at the end of this lecture. A large part of this section is based on Chapter 4 of ?.

First, let’s review Lp space equipped with the Lp norm:

Lp(X) := {f : X → R : ∥f∥p <∞} , ∥f∥p :=
{∫

X
|f(x)|pdx

}1/p

.

A special case: L2 equipped with the L2 norm induced by the following inner product:

⟨f, g⟩ :=
∫
X
f(x)p(x)dx, ∥f∥22 :=

∫
X
f(x)2dx.

When X = [a, b], −∞ < a ≤ b < +∞, L2 with the above inner product is a separable complete
metric space, which implies that ∀f ∈ L2, there exists countably many orthonormal basis functions
{ϕ1, ϕ2, · · · } such that

f =

∞∑
j=1

βjϕj ≡
∞∑
j=1

⟨f, ϕj⟩ϕj .

With the above expansion, we immediately have the famous Parseval’s identity in Fourier analysis:

∥f∥22 =
∫
f(x)2dx =

∞∑
j=1

β2j = ∥β·∥2ℓ2

where ∥ · ∥ℓ2 denotes the ℓ2 norm of a vector.
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3.1 Smoothness classes

Traditionally, we define functions by counting the number of derivatives. To this end, we define
C(X) to be the space of continuous functions and Cu(X) to be the space of uniformly continuous
functions. For m ∈ N, we define

Cm(X) :=
{
f ∈ Cu(X) : f (j) ∈ Cu(X) ∀j = 1, · · · ,m, ∥f∥Cm <∞

}
where ∥f∥Cm := ∥f∥∞+∥f (m)∥∞. Here we implicitly assume that for f ∈ Cm(X), all its derivatives
of order m or lower exist. C∞(X) are infinitely differentiable functions. In fields like differential
geometry, when people say smooth functions, they usually mean C∞(X).

3.2 Sobolev spaces

Sobolev spaces are extensions of smooth classes by relaxing the assumption of existing (higher-
order) derivatives and it is commonly used in PDE. To this end, we will define the concept of
“weak differentiable” and weak derivatives. First, locally integrable functions over R are functions
integrable over any Borel measurable sets of R (formed by unions of open intervals and their
complements).

Definition 2. A function f in Lp over X ⊂ R is weakly differentiable if there exists a locally
integrable function Df such that∫

X
f(u)ϕ′(u)du = −

∫
X
Df(u)ϕ(u)du

for every ϕ ∈ C∞(X) with compact support in interior(A). In PDE, ϕ is called “test function”.

Then we can define Lp Sobolev space of order m ∈ N as

Wm
p (X) :=

{
f ∈ Lp(X) : Djf ∈ Lp(X) ∀j = 1, · · · ,m, ∥f∥Wm

p
<∞

}
where ∥f∥Wm

p
:= ∥f∥p + ∥Dmf∥p.

3.3 Hölder spaces

Another commonly studied space is the Hölder space. It is very similar to Sobolev space but it
allows non-integer-valued smoothness index. For X ⊂ R, define Hölder space of smoothness s as:

Hs(X) := {f ∈ Cu(X) : ∥f∥Hs <∞} .

• When s ∈ (0, 1), ∥f∥Hs := ∥f∥∞ + sup
x,y∈X,x ̸=y

|f(x)− f(y)|
|x− y|s

• When s > 1 and s is non-integer, ∥f∥Hs := ∥f∥C⌊s⌋ + sup
x,y∈X,x ̸=y

|f (⌊s⌋)(x)− f (⌊s⌋)(y)|
|x− y|s−⌊s⌋ .
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Naturally, when s is an integer, Hs(X) = Cs(X).
For both Hölder spaces and Sobolev spaces, we sometimes also restrict to Hölder balls and

Sobolev balls by requiring the corresponding norms to be less than some constant C (radius).
Then we have

Wm
p (X;C) :=

{
f ∈ Wm

p (X) : ∥f∥Wm
p

≤ C
}
,

Hs(X;C) := {f ∈ Hs(X) : ∥f∥Hs ≤ C} .

In particular, Wm
2 (X;C) and Hs(X;C), in terms of statistical behavior, are almost the same

because:

• In terms of minimax estimation rate of convergence under L2 loss for Wm
2 (X;C) (Hs(X;C))

is n−
m

1+2m (n−
s

1+2s ).

• The metric entropies (log of covering number) for Wm
2 (X;C) (Hs(X;C)) is ϵ−1/m (ϵ−1/s).

When d = 1, Sobolev spaces with appropriate inner products are reproducing kernel Hilbert
spaces (RKHS) because they are at least weakly differentiable (as m ≥ 1).

Remark 3. Generalizing to X ⊆ Rd with d finite (see Appendix B), we have

• In terms of minimax estimation rate of convergence under L2 loss for Wm
2 (X;C) (Hs(X;C))

is n−
m

d+2m (n−
s

d+2s ).

• The metric entropies (log of covering number) for Wm
2 (X;C) (Hs(X;C)) is ϵ−d/m (ϵ−d/s).

Therefore both Sobolev spaces and Hölder spaces suffer from the curse of dimensionality (COD).
Weinan E (who founded Zhiyuan College at SJTU) wants to ask what kind of function spaces
should be well approximated by deep neural networks without suffering from COD so he dislikes
Hölder type spaces as models for studying neural networks. See ?.

4 Approximation of function spaces

For L2, since it is a separable complete metric space, we can represent any of its members using
linear combination of countably many functions. It is relatively easier to think about approximating
functions in this space. In practice, we can only compute finitely many functions so we need to
truncate the series f =

∑∞
j=1 βjϕj at some finite dimension k.

One approach is to project f onto the span of the first k basis functions ϕ̄k := {ϕ1, ϕ2, · · · , ϕk}
(span(ϕ̄k)). With slight abuse of notation, we write

f̄k := Π[f |span(ϕ̄k)] ≡ Π[f |ϕ̄k].

By orthonormality of the basis functions, we immediately have f̄k =
∑k

j=1 βjϕj . We also call f̄k

as the k-term linear approximation of f because for any two k-term linear approximation f̄ (1) and

f̄ (2), f̄ (1) + f̄ (2) is also a k-term linear approximation.
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Not all function spaces can be well approximated by linear approximation. Thus we sometimes
also need nonlinear approximation. To this end, define the following space:

Λ0,k :=

f ∈ L2 : f =

∞∑
j=1

βjϕj , ∥β·∥0 ≤ k

 .

We define the k-term nonlinear approximation of f as

f̃k :=
∑
j∈Ik

βjϕj

where Ik is the set of indices corresponding to the largest k |βj |’s.
When you assume that the underlying functions are Hölder or Sobolev, then you immediately

know which basis functions are the “best” k-term linear approximation basis in those spaces (dis-
cussed in the next lecture), i.e. to achieve approximation error k−m/d or k−s/d in L2 or L∞ norms.
But it is a completely open problem when you do not want to assume F to be, say, Hölder but
you are given a huge dictionary of functions and need to pick which k of them best approximate
the underlying function f . In that case, the only known polynomial-time algorithm for finding the
best k dictionaries is the greedy forward-selection method and its variants [??].

4.1 Common basis functions

There are several orthonormal basis functions (w.r.t. the Lebesgue measure) that we often use.

1. Fourier basis: ϕ1(x) = 1, and

ϕ2j(x) =
1√
2
cos(2jπx), ϕ2j+1(x) =

1√
2
sin(2jπx), j = 1, 2, · · ·

2. Haar basis on [0, 1]: {
ϕ(x), ψj,ℓ(x), j = 1, 2, · · · , ℓ = 0, 1, 2, · · · , 2j − 1

}
where ϕ(x) = 1{x ∈ [0, 1]} (scaling function/father wavelet) and ψj,ℓ(x) = 2j/2ψ(2jx − ℓ)
(dilation and translation), with ψ(x) = 1{x ∈ [0, 1/2]} − 1{x ∈ [1/2, 1]} (wavelet function/-
mother wavelet). As j gets larger, ψj,ℓ gets more localized. Haar basis is quite special: it is
both wavelet basis and spline basis. But the smoothness of Haar basis is low as it consists of
step functions only.

Remark 4. Why we only need ℓ = 0, 1, · · · , 2j−1 but not all natural numbers? Think about
the support of ϕ and ψ and compare them to the scaled and shifted ψj,ℓ.

3. B-splines, natural splines, cubic splines, Legendre polynomials, Chebyshev polynomials, ...
(not covered in this class, but useful to look them up on your own). In particular, splines are
very useful when you use generalized additive models (GAMs).

4. Wavelets (will be covered briefly later): before deep neural networks, wavelets are the most
power basis function for function approximation and imaging analysis.
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5. Neural networks: not basis functions in the traditional sense, but more likely than not, they
are the future.

Example 1. We use Sobolev ball as an example. We have the following theorem:

Theorem 5. Let {ϕj , j = 0, 1, · · · } be the Fourier basis. Then

Wm(C) ≡

f : f =
∞∑
j=1

θjϕj ,
∞∑
j=1

α2
jθ

2
j ≤ C2

 .

where αj = (πj)m for j even and αj = (π(j − 1))m for j odd. The RHS of the above equation is
also called a Sobolev ellipsoid with αj ∼ (πj)2m.

Based on this theorem, it is quite obvious that using the first k Fourier basis to approximate
functions in Wm(C), the error rate should be k−j.

5 Besov spaces

Besov spaces are the most general function spaces defined via smoothness and they are widely
studied in harmonic analysis. Besov spaces include Sobolev and Hölder spaces as special cases.
Another important feature of Besov spaces is that it allows the underlying function space to be
non-convex, under which linear estimators are not optimal [?] and nonlinear (e.g. shrinkage)
estimators must be used. We will offer two equivalent definitions of Besov spaces: (1) through
moduli of smoothness just as Sobolev spaces and Hölder spaces; (2) through the decay of wavelet
coefficients in the wavelet expansion of f . (Oleg Besov is still alive: Besov’s homepage).

5.1 Definition via moduli of smoothness

To define Besov spaces, we need to introduce a new concept: moduli of smoothness. First define the
translation operator: τh(f)(x) = f(x+ h) and the difference operator ∆h = τh − id so ∆h(f)(x) =
f(x+h)− f(x). Intuitively, h−1∆h(f)(x) acts like derivative except that we do not send h to zero.
Apparently, if Df exists, limh→0 h

−1∆h(f)(x) = Df(x).
By induction, we define the r-th order difference operator as ∆r

h = ∆h(∆
r−1
h ) = (τh − id)r.

Then

∆r
h(f)(x) =

r∑
k=1

(−1)r−k
(
r

k

)
f(x+ kh).

As above, we expect the following to hold:

lim
h→0

h−r∆r
h(f)(x) = Drf(x).

To see this, let’s assume Df exists. Then by the fundamental theorem of calculus, we have

∆h(f)(x) =

∫ x+h

x
Df(u)du =

∫
R
Df(u)1{x ≤ u ≤ x+ h}du = h

∫
R
Df(u)1

{
0 ≤ u− x

h
≤ 1

}
du

≡ h

∫
R
Df(u)N1,h(u− x)du
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where N1(x) = 1{x ∈ [0, 1]} (the Haar scaling function) and N1,h(x) = hN1(x/h).
Let’s look at ∆2

h(f)(x):

∆2
h(f)(x) = f(x+ 2h)− 2f(x+ h) + f(x) = h

∫
R
(Df(u+ h)−Df(u))N1,h(u− x)du

= h

∫
R

∫
R
D2f(v)1{u ≤ v ≤ u+ h}dvN1,h(u− x)du

= h2
∫
R

∫
R
D2f(v)1

{
0 ≤ v − u

h
≤ 1

}
dvN1,h(u− x)du

= h2
∫
R

∫
R
D2f(v)N1,h(v − u)dvN1,h(u− x)du

= h2
∫
R
D2f(v)

∫
R
N1,h(v − u)N1,h(u− x)dudv

= h2
∫
R
D2f(v)

∫
R
N1,h((v − x)− (u− x))N1,h(u− x)d(u− x)︸ ︷︷ ︸

≡N2,h(v−x):=[N1,h∗N1,h](v−x)

dv

= h2
∫
R
D2f(v)N2,h(v − x)dv.

Then by induction

∆r
h(f)(x) = hr

∫
R
Drf(u)Nr,h(u− x)du

where Nr is the (r − 1)-fold convolution of N1.
So we are left to show that

∫
RD

rf(u)Nr,h(u− x)du → Drf(x) as h → 0, or equivalently, Nr,h

asymptotically (in h→ 0) becomes the Dirac δ-function (which is not a function, but a generalized
function or distribution); for a proof, see Appendix A. Recall that for a δ-function δ0, we have∫
R f(u)δ0(u− x)du = f(x).

With the above analysis, we define the moduli of smoothness

ωr(f, t, p) := sup
0<h≤t

∥∆r
t (f)∥p

and when p = 2, we write ωr(f, t) ≡ ωr(f, t, 2).
Finally, we define Besov spaces as follows: given smoothness index s, take any r > s an integer,

Bs
p,q(X) :=


{
f ∈ Lp(X) : ∥f∥Bs

p,q
= ∥f∥p + |f |Bs

p,q
<∞

}
, 1 ≤ p <∞,{

f ∈ Cu(X) : ∥f∥Bs
p,q

= ∥f∥∞ + |f |Bs
p,q
<∞

}
, p = ∞,

where |f |Bs
p,q

is the so-called Besov semi-norm and is defined as

|f |Bs
p,q

:=


(∫∞

0

[
ωr(f, t, p)

ts

]q
dt
t

)1/q

, 1 ≤ q <∞,

sup
t>0

ωr(f, t, p)

ts
, q = ∞.
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Remark 6.

• The above definition is independent of the choice of r, as long as r > s.

• Changing from [0,∞] to [0, 1] in the definition creates an equivalent norm, so the integra-
tion/supremum range does not matter here. Interestingly, for most of the theoretical work
in nonparametric statistics, X, the space of the covariates, are assumed to be compactly
supported in R or Rd.

• In the discussion below, we treat the o.n.b. on R as if we have renormalized and done a bunch
of boundary corrections to make them also o.n.b. on [0, 1]. We do not go into the nitty gritty
about how to transform o.n.b. in one domain into o.n.b. in another domain.

5.2 Definition via decaying rate of wavelet coefficients

Another equivalent definition is through the decay rate of wavelet coefficients of wavelet expansion.
This is closely related to the Parseval’s identity that we discussed in the beginning. But first, let’s
briefly introduce wavelet expansion. Here we focus on X = [0, 1] ⊆ R.

Recall that we said Haar basis is a special wavelet o.n.b. on [0, 1]. Haar basis functions are
defined as follows: {

ϕ, ψjk, k = 0, 1, · · · , 2j − 1, j = 1, 2, · · ·
}

where

ϕ(x) := 1{0 ≤ x ≤ 1}, ψ(x) := 1{0 ≤ x ≤ 1/2} − 1{1/2 ≤ x ≤ 1}

and

ψjk(x) = 2j/2ψ(2jx− k).

Usually ϕ is called scaling function/father wavelet and ψ is called wavelet function/mother wavelet.
It is an exercise to check that Haar wavelets are indeed o.n.b. on [0, 1] with respect to the Lebesgue
measure. More importantly, from Haar wavelets, we can easily see an important property of wavelets
in general – the multi-resolution analysis (MRA) property. To see this, we must study why we need
a function ψ different from ϕ to obtain an o.n.b. Let’s first define a subspace V0 of L2([0, 1]) as
follows:

V0 := span{ϕ}.

Then define Vj iteratively as follows:

Vj := span{f(2j ·−k), k = 0, 1, · · · , 2j − 1 : f ∈ Vj−1}.

Obviously, the subspaces V0, V1, · · · are nested: Vj−1 ⊆ Vj for every j = 0, 1, · · · and V∞ = L2([a, b]).
To get o.n.b. out of these nested subspaces of L2([0, 1]), we need to get rid of the redundancy by
calculating the difference between Vj−1 and Vj , denoted as Wj−1 = Vj \Vj−1. Again, we start from
W0 = V1 \V0. In particular, V1 = span{ϕ(2(·)), ϕ(2(·)− 1)} ≡ span{1{· ∈ [0, 1/2)},1{· ∈ [1/2, 1]}}.
Then we can deduce

W0 = V1 \ V0 = span{1{· ∈ [0, 1/2)} − 1{· ∈ [1/2, 1]}}.
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By induction, we can conclude (I omitted many details here and it is not that obvious. But you
are recommended to read ?):

Wj−1 = Vj \ Vj−1 = span{2j/2ψ(2j(·)− k), k = 0, 1, · · · , 2j − 1}.

Therefore V1 = V0 ⊕ V1 and Vj = Vj−1 ⊕Wj−1 = V0 ⊕
(
j−1
⊕
ℓ=0

Wℓ

)
= VJ0 ⊕

(
j−1
⊕
ℓ=J0

Wℓ

)
. This is the

so-called MRA property.
Haar is not the only wavelets and it is quite non-smooth (dilation and translation of step

functions). We can also define the so-called S-regular Daubechies wavelets by imposing stronger
smoothness conditions on the scaling function/father wavelet ϕ and the wavelet function/mother
wavelet ψ. S-regular basically means that ϕ and ψ are S-order differentiable (up to some minor
technicalities). A good reference on how to construct S-regular wavelet basis functions is ?. With
S-regular scaling and wavelet functions, the corresponding wavelet o.n.b. is

z̄ := {ϕJ0,ℓ, ℓ ∈ Iϕ,J0 , ψj,ℓ, ℓ ∈ Iψ,j , j = J0, J0 + 1, · · · } . (1)

with 2J0 ≥ S (Now you also see why Haar wavelet o.n.b. use J0 = 0). Here Iϕ,j and Iψ,j are the
index set of ℓ such that respectively ϕj,ℓ and ψj,ℓ might be non-zero. The cardinality of Iϕ,j and
Iψ,j are at most O(2j) with the constant depending on ϕ and ψ, respectively. When we truncate
the above basis z̄ at a certain resolution j, we denote the truncated basis functions as z̄j . In many
occasions, denote k = 2j , we also write z̄j ≡ z̄k. Then the cardinality of z̄k is O(k) = O(2j).

All S-regular Daubechies wavelets have the following important structural properties, all derived
from the localization property of Daubechies wavelets (similar to Haar):

Lemma 7. For notational convenience, rewrite z̄ in equation (1) as follows

z̄ ≡ {z1, z2, · · · }

where we simply rename every member in equation (1) based on the order of their formal appearance
in equation (1). Then the following are quite useful in many theoretical results in nonparametric
statistics:

1. When truncating z̄ at resolution j for the scaled and translated wavelet functions/mother
wavelets, the number of elements in z̄j is O(2j) and from now on, with abuse of notation, we
denote z̄j as z̄k where k = 2j;

2. For every x ∈ [0, 1], at each resolution j, there is at most O(1) number of functions in z̄ that
are possibly non-zero;

3. ∥z̄⊤k z̄k∥∞ ≲ k.

Proof. Statement 1 is obvious from construction (though we did not cover how to construct
Daubechies wavelets in detail, it has very similar localization property to Haar wavelets).

For statement 2, let’s examine the part of scaled and translated wavelet functions/mother
wavelets. Say at some resolution j and translation ℓ, ψjℓ(x) ≡ 2j/2ψ(2jx−ℓ) ̸= 0 ⇒ ψ(2jx−ℓ) ̸= 0.
Then a ≤ 2jx − ℓ ≤ b for some finite a < b and hence 2jx − b ≤ ℓ ≤ 2jx − a so |ℓ : 2jx − b ≤ ℓ ≤
2jx− a| = O(1).
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Statement 3 is a direct corollary of statement 2.

z̄⊤k (x)z̄k(x) =
∑
ℓ∈IJ0

2J0ϕ2(2J0x− ℓ) +

j∑
m=J0

∑
ℓ∈Im

2mψ2(2mx− ℓ)

⇒ ∥z̄⊤k z̄k∥∞ ≤ 2J0O(1) sup
t
ϕ2(t) +

j∑
m=J0

2mO(1) sup
t
ψ2(t)

≲ 2J0 + 2J0 + · · ·+ 2j ≲ 2j+1 − 1 ≲ k

where in the second line we applied statement 2.

With these, we now state an equivalent definition of Besov spaces via the decaying property of
wavelet coefficients:

Definition 8 (Besov spaces via wavelet coefficients).

Bs
p,q :=

{
{f ∈ Lp([0, 1]) : ∥f∥ℓBs

p,q
<∞} 1 ≤ p <∞,

{f ∈ Cu([0, 1]) : ∥f∥ℓBs
p,q

<∞} p = ∞,

where

∥f∥ℓBs
p,q

:=


2
J0(s+

1
2
− 1

p
)∥⟨f, ϕJ0,·⟩∥p +

(
∞∑

m=J0

2
qm(s+ 1

2
− 1

p
)∥⟨f, ψm,·⟩∥qp

)1/q

1 ≤ q <∞,

2
J0(s+

1
2
− 1

p
)∥⟨f, ϕJ0,·⟩∥p + supm≥J0 2

m(s+ 1
2
− 1

p
)∥⟨f, ψm,·⟩∥p q = ∞.

From the above definition, for Bs
2,∞, it is obvious that if we truncate z̄ at resolution j, the

approximation error is of order 2−js.

6 Barron space and compositional space: A step towards deep
learning?

As mentioned, ? offer a new perspective of defining function spaces that are arguably better suited
to explain the success of deep learning than the traditional function spaces (culminated at Besov
spaces) because they suffer from the curse of dimensionality. In particular, they define the so-called
Barron space to be the space of functions that they conjecture to be learnable without suffering
from curse of dimensionality using two-layer neural networks.

Definition 9 (Barron space). Barron space is defined as a continuous version of a two-layer neural
network fm(x) =

1
m

∑m
j=1 ajσ(ω

⊤
j x + bj) (i.e. a neural network with one hidden layer) by taking

the width of the hidden layer to ∞:

FBp
:=

{
f : f(x) =

∫
aσ(ω⊤x+ b)ρ(da, dω, db), ∥f∥Bp ≤ ∞

ρ is a probability measure of the neural network parameters a, ω, and b

}
where

∥f∥Bp
:= inf

ρ
{Eρ [|a|p (∥ω∥1 + |b|)p]}1/p

with 1 ≤ p ≤ ∞.

10



Then ? showed the following theorem:

Theorem 10. ∀f ∈ FBp, there exists a two-layer neural network fm(·; θ) such that

∥f(·)− fm(·; θ)∥2Bp
≲

∥f∥2Bp

m

with ∥θ∥p := 1
m

∑m
j=1 |aj | (∥ωj∥1 + |bj |) ≤ 2∥f∥Bp.

Define FBp(C) :=
{
f ∈ FBp : ∥f∥Bp ≤ C

}
to be the Barron ball. Then

Radn(FBp(C)) ≲

(
log(d)

n

)1/2

where Radn denotes the Rademacher complexity and d is the dimension of X.

Next ? generalize the Barron space to space of functions that are conjectured to be learnable by
deep neural networks. We only mention the formalization for deep residual networks. ? define the
space that is learnable by deep residual networks by taking the number of layers L to ∞ and view
the parameter propagation through the residual networks as a dynamical system. In particular
deep residual network is constructed as follows:

Z0,L(x) = V x, the input layer

Zℓ+1,L(x) = Zℓ,L(x) +
1

L
Uℓσ(WℓZℓ,L(x))

fL(x; θ) = α⊤ZL,L(x).

Then V ∈ RD×d, Wℓ ∈ Rm×D, Uℓ ∈ RD×m and α are the parameters in the deep residual
network. Then let L→ ∞, we have the following corresponding dynamical system:

Z(x, 0) = V x

Ż(x, t) = E(U,W )∼ρtU · σ(WZ(x, t))

fα,{ρt}t∈[0,1]
(x) = α⊤Z(x, 1).

Remark 11. Final remark on these “deep learning” spaces. The idea is quite novel even in the
applied mathematics community. But somehow I feel like it makes things too easy; it will be
interesting to see (1) if deep learning can adaptively learn the “simpler” Barron spaces when they
are embedded in a “more difficult” space like Besov and (2) if the true data generating law is
not the simpler Barron spaces what deep learning would learn. Very few papers consider model
misspecification in deep learning because (i) it is often overparameterized and (ii) there are many
universal approximation theorems for neural networks. But if deep learning is really leveraging the
dynamical system evolution governed by stochastic gradient descent, there will be a bias towards
certain structure.

7 Optimal rate of estimation: Upper bound

Let’s consider the following observation scheme:

(Xi, Yi)
n
i=1

i.i.d.∼ Pf , Y = f(X) + ϵ, ϵ ∼ N(0, σ2), X ∼ Unif([0, 1])

11



where f ∈ Hölder(α;C). We want to understand the rate of convergence of an estimator f̂ to the
truth f in the above setup in squared error loss:

E∥f̂ − f∥22 = E
∫ 1

0
(f̂(x)− f(x))2dx.

Here f is an infinite dimensional object but we can only compute finite-dimensional quantity.
Therefore we need to first approximate f by truncating its linear wavelet expansion at certain
resolution j ≡ j(n) with j → ∞ as n → ∞. Denote k(n) = 2j(n). Here we need the resolution to
depend on the sample size n, which might be not very natural if it is the first time that you see this.
Such “changing with n” estimation procedure is called “sieve methods” in statistical literature. By
the previous discussion, we know that the best linear approximation of f is

f̄k(n)(x) = Π[f |z̄k(n)](x) = β⊤kn z̄k(n)(x) ≡ ⟨f, z̄k(n)⟩⊤z̄k(n)(x)

and we immediately know that ∥f − f̄k(n)∥2∞ ≍ k(n)−2α, which also gives ∥f − f̄k(n)∥22 ≲ k(n)−2α

where ∥f − f̄k(n)∥22 :=
∫ 1
0 (f(x)− f̄k(n)(x))

2dx. This gives us the bias of estimating f by f̄k(n)(x).
In class, we pretend not knowing the marginal distribution of X and construct the following

unbiased estimator of f̄kn(x):

f̂k(n)(x) =

{
1

n

n∑
i=1

Yiz̄k(n)(Xi)

}⊤

z̄k(n)(x).

Let’s now compute the variance of f̂k(n)(x):

E
∫ 1

0

(
f̂k(n)(x)− f̄k(n)(x)

)2
dx = E

∫ 1

0


[
1

n

n∑
i=1

Yiz̄k(n)(Xi)− ⟨f, z̄k(n)⟩

]⊤
z̄k(n)(x)


2

dx

=E
∫ 1

0

1

n2

n∑
i=1

(
Yiz̄k(n)(Xi)− ⟨f, z̄k(n)⟩

)⊤
z̄k(n)(x)z̄k(n)(x)

⊤ (Yiz̄k(n)(Xi)− ⟨f, z̄k(n)⟩
)
dx

=
1

n
E
(
Yiz̄k(n)(Xi)− ⟨f, z̄k(n)⟩

)⊤ (
Yiz̄k(n)(Xi)− ⟨f, z̄k(n)⟩

)
≤ 1

n
EY 2

i z̄k(n)(Xi)
⊤z̄k(n)(Xi)

≤ 1

n
∥z̄⊤k(n)z̄k(n)∥∞

(
EE[Y 2|X]

)
≲
k(n)

n

where in the last line we use Lemma 7.3. Therefore we have squared bias k(n)−2s and variance
k(n)/n. To obtain optimal rates under squared error loss, we need to equate k(n)−2s = k(n)/n⇒
k(n) = n

1
1+2s . This gives us the optimal rate of convergence n−

2s
1+2s in squared error loss or n−

s
1+2s

in L2 norm.

Remark 12. When X is unknown, we need to perform linear regression between Y and z̄k(n)(X)

and have an extra term

{
1
n

n∑
i=1

z̄k(n)(Xi)z̄k(n)(Xi)
⊤
}−1

and we need to use some very basic random

matrix theory to prove variance bound.

12



There are several questions left unanswered: (1) is the upper bound tight? (2) can we adapt
without knowing the smoothness?

8 Minimax lower bound

There are several good references for techniques of proving minimax lower bound: books like ??,
notes including Siva Balakrishnan’s notes and Larry Wasserman’s notes, a survey paper by ? and
an application in privacy data analysis. In particular, Siva’s notes have many examples of lower
bound calculations outside the smoothness classes that we will focus on in this note.

8.1 Reduction scheme

Lower bounds are generally difficult to derive because to show something to be impossible is hard.
Fortunately, statisticians have come up with a set of tools that have been proven to be very useful
in problem solving. The main idea is the following reduction scheme: from estimation to hypothesis
testing. In particular, as summarized in ?, the reduction scheme is comprised of the following four
steps:

1. Markov inequality turns risk (expectation) into tail probability. Recall that the minimax risk
is defined as

R∗
n := inf

θ̂n

sup
θ∈Θ

E[d(θ̂n, θ)].

A straightforward application of Markov inequality tells us:

inf
θ̂n

sup
θ∈Θ

P
(
d(θ̂n, θ) ≥

s

2

)
≤ inf

θ̂n

sup
θ∈Θ

2

s
E[d(θ̂n, θ)]

⇒R∗
n ≥ s

2
inf
θ̂n

sup
θ∈Θ

P
(
d(θ̂n, θ) ≥

s

2

)
.

2. “Supremum” reduced to “maximum”. A second reduction is quite natural: supθ∈Θ is quite
difficult to handle when Θ is an infinite set so we lower bound the worst case over all Θ by
the worst case over finitely many elements in Θ:

inf
θ̂n

sup
θ∈Θ

P
(
d(θ̂n, θ) ≥

s

2

)
≥ inf

θ̂n

max
θ∈{θ1,··· ,θM}

P
(
d(θ̂n, θ) ≥

s

2

)
where θj ∈ Θ for all j = 1, · · · ,M .

3. Reducing “tail probability of the loss” to “error probability of the best test statistic”. Here we
need to put constraints on the finite subset {θ1, · · · , θM} of Θ so that they are not too close:
d(θj , θk) ≥ s for all 1 ≤ j ̸= k ≤ M . Here s will be the minimax rate we are looking for
but we leave it as it is for now and will determine its value through information theoretical
calculations. The distance lower bound between every pair θj , θk implies:

s ≤ d(θj , θk) ≤ d(θ̂n, θj) + d(θ̂n, θk).
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Furthermore define a test statistic Ψn : Xn 7→ {1, 2, · · · ,M} is a mapping from the data
to one of the classes from 1 to M and Ψ∗ := argmin1≤ℓ≤Md(θ̂n, θℓ) is a test based on the

estimator θ̂n. For every j, when the true data generating distribution is Pj corresponding to
θj

Pj(Ψ∗ ̸= j) ≡ Pj
(
∃ k ̸= j s.t. d(θ̂n, θk) ≤ d(θ̂n, θj)

)
≤ Pj

(
d(θ̂n, θj) ≥

s

2

)
.

Hence we have

inf
θ̂n

max
θ∈{θ1,··· ,θM}

P
(
d(θ̂n, θ) ≥

s

2

)
≥ inf

θ̂n

max
j∈{1,··· ,M}

Pj(Ψ∗ ̸= j) ≥ inf
Ψn

max
j∈{1,··· ,M}

Pj(Ψn ̸= j).

In summary, we have the following strings of inequalities: suppose that {θ1, · · · , θM} satisfies
for every j ̸= k, d(θj , θk) ≥ s, then

R∗
n ≥ s

2
inf
θ̂n

sup
θ∈Θ

P
(
d(θ̂n, θ) ≥

s

2

)
≥ s

2
inf
θ̂n

max
θ∈{θ1,··· ,θM}

P
(
d(θ̂n, θ) ≥

s

2

)
≥ s

2
inf
Ψn

max
j∈{1,··· ,M}

Pj(Ψn ̸= j).

(2)

Thus if s is the minimax rate we are going after, we only need infΨn maxj∈{1,··· ,M} Pj(Ψn ̸= j) ≥ c′

for some c′ ∈ (0, 1).

8.2 Le Cam’s two-points method

Le Cam’s method discretizes Θ by a set of two parameters {θ0, θ1} so M = 2. Then equation (2)
reduces to

R∗
n ≥ s

2
inf
Ψn

max
{
P⊗n
0 (Ψn = 1),P⊗n

1 (Ψn = 0)
}
≥ s

4
inf
Ψn

{
P⊗n
0 (Ψn = 1) + P⊗n

1 (Ψn = 0)
}
.

Then recall the following equivalent characterizations of total variation distance TV(P⊗n
0 ,P⊗n

1 ):

1− TV(P⊗n
0 ,P⊗n

1 ) = inf
Ψn

{
P⊗n
0 (Ψn = 1) + P⊗n

1 (Ψn = 0)
}
=

∫
fn0 (x) ∧ fn1 (x)dx

where fn0 and fn1 are the p.d.f. of the product measures P⊗n
0 and P⊗n

1 . Here f0 =
dP0
dµ and f1 =

dP1
dµ

with µ a dominating measure of P0 and P1.
Thus we have the following Le Cam’s lemma:

Lemma 13.

R∗
n ≥ s

4

∫
fn0 (x) ∧ fn1 (x)dx =

s

4
{1− TV(P⊗n

0 ,P⊗n
1 )}

≥ s

8
e−nKL(P0∥P1) ≥ s

8
e−nχ

2(P0∥P1).

(3)

Remark 14. We further derive lower bounds based on KL- and χ2-divergences because they
tensorize for product measures.
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Proof. The first line of inequality (3) is a consequence of equivalent characterization of TV distance.
For the first inequality in the second line, we need some new results. First let’s consider the famous
Pinsker inequality.

Lemma 15. KL(P0∥P1) ≥ 2TV2(P0,P1) ≡ 2
(
1
2

∫
|f0 − f1|

)2
= 1

2∥P0 − P1∥21.

Proof. This proof is due to David Pollard. Consider the elementary inequality for the function that
we have used in proving Bernstein’s inequality:

ϕ(t) = (1 + t) log(1 + t)− t ≥ 1

2

t2

1 + t/3
, for t ≥ −1.

Take f0(x)
f1(x)

= 1 + r(x), obviously r(x) ≥ −1. Obviously, we have the following identities∫
r(x)f1(x)dx =

∫ (
f0
f1

(x)− 1

)
f1(x)dx = 0,

∫
|r(x)|f1(x)dx =

∫ ∣∣∣∣f0f1 (x)− 1

∣∣∣∣ f1(x)dx = ∥P0−P1∥1.

Next

KL(P0∥P1) =

∫
f0(x) log

(
f0
f1

(x)

)
dx =

∫
(1 + r(x)) log (1 + r(x)) f1(x)dx

=

∫
{(1 + r(x)) log (1 + r(x))− r(x)} f1(x)dx

≥
∫

1

2

r(x)2

1 + r(x)/3
f1(x)dx

=
1

2

∫
r(x)2

1 + r(x)/3
f1(x)dx ·

∫
(1 + r(x)/3) f1(x)dx

≥ 1

2

[∫
|r(x)|√

1 + r(x)/3

√
1 + r(x)/3f1(x)dx

]2

=
1

2

[∫
|r(x)|f1(x)dx

]2
=

1

2
∥P0 − P1∥21

≡ 1

2
(2TV(P0,P1))

2 = 2TV(P0,P1)
2.

But Pinsker inequality is not good enough for us to obtain the exponential bound on KL-
divergence. To get such bound, we actually need the following lemma:

Lemma 16.
∫
f0 ∧ f1 ≥ 1

2 exp (−KL(P0∥P1)).

Proof. Recall the following fact from our previous lecture
∫
f0 ∨ f1+

∫
f0 ∧ f1 = 2. Using this fact,
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we have ∫
f0 ∧ f1 ≥

1

2

(∫ √
f0f1

)2

=
1

2
exp

(
2 log

∫ √
f0f1

)
=

1

2
exp

(
2 log

∫ √
f1
f0
f0

)
≥ 1

2
exp

(
2

∫
log

√
f1
f0
f0

)

=
1

2
exp

(∫
log

f1
f0
f0

)
=

1

2
exp

(
−
∫

log
f0
f1
f0

)
≡ 1

2
exp (−KL(P0∥P1)) .

Applying Lemma 16 with f0, f1 replaced by fn0 , f
n
1 , and using the following fact:

KL(P⊗n
0 ∥P⊗n

1 ) = nKL(P0∥P1),

we immediately have R∗
n ≥ s

8e
−nKL(P0∥P1).

To get the last lower bound with χ2-divergence, we recall the following result:

Lemma 17. KL(P0∥P1) ≤ χ2(P0∥P1).

Proof. KL(P0∥P1) =
∫
f0 log

f0
f1

≤ log
∫ f20
f1

= log
{
χ2(P0∥P1) + 1

}
≤ χ2(P0∥P1).

Corollary 1. If KL(P0∥P1) ≤
log(2)

n
, then R∗

n ≥ s

16
.

Proof.

R∗
n ≥ s

8
exp {−nKL(P0∥P1)} ≥ s

8
e− log(2) =

s

16
.

Now we use the above results to show that for estimating a point on the function f(x), with f
Lipschitz continuous (Hölder with smoothness s = 1), the minimax lower bound under L2 loss is

n−1/3, which is simply n−
s

1+2s with s = 1.

Example 2. Observation: (Xi, Yi)
n
i=1

i.i.d.∼ P where Yi = f(Xi)+ εi, εi ∼ N(0, 1), X ∼ Unif([0, 1]),
and f ∈ Lipschitz(L). We are interested in estimating θ = f(0). The loss function is then simply
d(θ0, θ1) = |θ0 − θ1|.

The key is to construct the two points θ0, θ1. Since we are interested in deriving lower bound,
we only need to exhibit a counterexample for which the rate of convergence must be slower than
s and therefore we should try to find the simplest possible counterexample so the analysis is easy.
Another constraint is that θ0 and θ1 cannot be too close – they need to be s apart or n−1/3 apart!

Based on the above reasoning, we consider the following two point: f0(x) ≡ 0 and

f1(x) =

{
L(δ − x) 0 ≤ x ≤ δ
0 x ≥ δ

16



Then |θ0 − θ1| = |f0(0)− f1(0)| = Lδ ≥ s. Similarly, by the property of KL-divergence between two
normals

KL(P0∥P1) =
1

2

∫ 1

0
(f1(x)− f0(x))

2dx =
1

2

∫ δ

0
L2(δ − x)2dx =

L2

6
δ3 ≤ log(2)

n

which gives us δ ≲ n−1/3 and thus s ≍ n−1/3.

8.3 Fano’s “multiple-points” method

It is not hard to see that Le Cam’s two-point method seems to simplify the problem a bit too much.
For instance, in Example 2, if we change our parameter of interest to the entire function θ = f(·)

and the loss function as the L2 norm d(θ0, θ1) =
{∫ 1

0 (f1(x)− f0(x))
2dx
}1/2

. Then based on Le

Cam’s two point, we have

d(θ0, θ1) =

{
L2

∫ δ

0
(δ − x)2dx

}1/2

≍ δ3/2 ≍ n−1/2.

But we know that this bound is not tight (should be n−1/3 instead). Le Cam’s two point method
for such global estimation problem is deficient and we need some modification to get a tighter lower
bound.

The modification is simple: instead of using two points, usingM points and this is the so-called
Fano’s method. First, we need the following Fano’s lemma as our theoretical foundation, which is
proved by techniques with very heavy information theoretical flavor.

Lemma 18 (Fano’s lemma). X1, · · · , Xn
i.i.d.∼ P with P ∈ {P1, · · · ,PM}. Define β := max

1≤k ̸=j≤M
KL(Pj∥Pk).

Then

1

M

M∑
j=1

Pj(Ψn ̸= j) ≥ 1− nβ + log(2)

log(M)
.

Proof. We assume n = 1 without loss of generality. Define U ∼ Unif{1, · · · ,M} and X|U = j ∼ Pj .
Then for any measurable event E

P (X ∈ E,U = j) = P (U = j)P (X ∈ E|U = j) =
1

M
Pj(E).

Then for the test statistic Ψ ≡ Ψ(X),

P(Ψ ̸= U) =
1

M

M∑
j=1

Pj(Ψ ̸= j).

Further define Z := 1{Ψ ̸= U} is a function of (X,U). Then

H(Z,U |X) = H(U |X) +H(Z|U,X)︸ ︷︷ ︸
≡0

= H(U |X),

⇒ H(U |X) = H(Z,U |X) = H(Z|X) +H(U |Z,X)

≤ H(Z) +H(U |Z,X)

= − P(Ψ ̸= U) logP(Ψ ̸= U)− P(Ψ = U) logP(Ψ = U) +H(U |Z,X)

≤ log(2) +H(U |Z,X).
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By definition

H(U |Z,X) = P(Z = 0)H(U |Z = 0, X) + P(Z = 1)H(U |Z = 1, X).

But when Z = 0, Ψ(X) = U so given X we have all the information on U thus H(U |Z = 0, X) = 0.
When Z = 1, Ψ(X) ̸= U so the possible number of values that Ψ can take is M − 1 (we do not
have to use this though). Then

H(U |Z,X) = P(Z = 1) log(M − 1) = P(Ψ ̸= U) log(M − 1),

hence H(U |X) ≤ log(2) + P(Ψ ̸= U) log(M − 1). But H(U |X) = H(U) − I(U ;X) where I(U ;X)
is the mutual information between U and X, where

I(U ;X) = KL(PU,X∥PU ⊗ PX) =
1

M

M∑
j=1

KL

(
Pj∥

1

M

M∑
k=1

Pk

)

≤ 1

M2

M∑
j=1

M∑
k=1

KL(Pj∥Pk) ≤ β.

Hence

1

M

M∑
j=1

P(Ψ ̸= j) = P (Ψ ̸= U) ≥ H(U)− I(U ;X)− log(2)

log(M − 1)
≥ log(M)− β − log(2)

log(M − 1)
≥ 1− β + log(2)

log(M)
.

Lemma 18 has the following immediate corollary:

Corollary 2 (Fano’s minimax bound). If β ≤ log(M)

4n
, then R∗

n ≥ s

4
as long as M ≥ 16.

Finally, we revisit Example 2 using Fano’s minimax bound. A common strategy is to param-
eterize {1, · · · ,M} through Boolean hypercubes Ω = {ω : ω ∈ {±1}N} with 2N = M . For any
ω, ν ∈ Ω, define their Hamming distance as Ham(ω, ν) :=

∑N
i=1 1{ωi ̸= νi}. We consider the

following function space within the Lipschitz class:

F := {fω =

N∑
j=1

ωjBj , ω ∈ Ω}

where N = 1
h and we define

B(x) :=

{
x 0 ≤ x ≤ 1

2
1− x 1

2 ≤ x ≤ 1
, B(

x

h
) :=

{
x
h 0 ≤ x ≤ h

2
1−x
h

h
2 ≤ x ≤ h

and Bj(x) := LhB(
x− j

h
).

Then we need to upper bound the KL-divergence and lower bound the distance between any
member of F . But apparently, Ω (and hence F) is too large for the distance lower bound to be any
useful. Therefore we consider F ′ to be the pruned space

F ′ := {fω =

N∑
j=1

ωjBj , ω ∈ Ω′}.

By the following Varshamov-Gilbert bound (Lemma 19), we know that we can always have Ω′ such
that Ω′ = {ω(1), · · · , ω(M)}
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1. M ≥ 2N/8;

2. Ham(ω(j), ω(k)) ≥ N

8
∀ 0 ≤ j ̸= k ≤M .

So for any ω(j), ω(k) ∈ Ω′,

d(fj , fk)
2 =

∫ 1

0
(fj(x)− fk(x))

2dx =

∫ 1

0

(
N∑
i=1

(ω
(j)
i − ω

(k)
i )Bi(x)

)2

dx

=
N∑
i=1

(ω
(j)
i − ω

(k)
i )2

∫ 1

0
L2h2B2

(
x− j

h

)
dx

≍ h3
N∑
i=1

(ω
(j)
i − ω

(k)
i )2 = h3Ham(ω(j), ω(k)) ≥ h3

N

8
=
h2

8
,

and following Corollary 2

KL(Pj∥Pk) ≲ h3Ham(ω(j), ω(k)) ≤ h3N = h2 ≤ log(2N/8)

4n
≲ N/n =

1

nh
⇒ h ≲ n−1/3.

Hence s2 ≍ n−2/3.
Finally, we will use this following important result in combinatorics:

Lemma 19 (Varshamov-Gilbert bound). Let Ω be a Boolean hypercube with dimension N with
N ≥ 8. Then there exists a “pruned” hypercube Ω′ = {ω(1), · · · , ω(M)} s.t.

1. M ≥ 2N/8;

2. Ham(ω(j), ω(k)) ≥ N

8
∀ 0 ≤ j ̸= k ≤M .

Proof. Define n := N/8, say choose N such that n is an integer. We do the following steps to get
the pruned hypercube Ω′: First, define ω(0) = (1, 1, · · · , 1, 1).

• Define Ω0 = Ω and Ω1 = {ω ∈ Ω : Ham(ω, ω(0)) > n} and take any element from Ω1 to be
ω(1).

• Repeat the above recursively and define Ωj = {ω ∈ Ωj−1 : Ham(ω, ω(j−1)) > n} until we
cannot find any such ω any more, say j = 1, · · · ,M . At each step, the pruned out space is

Γj = {ω ∈ Ωj : Ham(ω, ω(j)) ≤ n}.

Define nj := |Γj |. Apparently Γ0, · · · ,ΓM form a partition of Ω. Thus

2N = n0 + · · ·+ nM .

Also we observe that nj ≤
n∑
i=1

(
N
i

)
because fixing ω(j), the ω’s s.t. Ham(ω, ω(j)) ≤ n are the ω’s

that differ from ω(j) in at most n dimensions out of the total N dimensions. Therefore

2N = n0 + · · ·+ nM ≤ (M + 1)

n∑
i=1

(
N

i

)
⇒M + 1 ≥ 1

n∑
i=1

(
N
i

)
2−N

=
1

n∑
i=1

(
N
i

) (
1
2

)i (1
2

)N−i
.
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Thus the denominator of the RHS of the above display is the c.d.f. at n of a Binomial random
variable Z ∈ Binom(N, 1/2). Then by a simple Hoeffding’s inequality, we have P(Z ≤ n) =
P(Z −N/2 ≤ n−N/2) ≤ exp {−9N/32}. Thus

M + 1 ≥ exp{9N/32} ⇒M ≥ 2N/8.

9 Adaptive estimation in L2 risk

Recall that for f ∈ H(α;C), in nonparametric regression with Gaussian error and uniform on [0, 1]

distribution for covariates X, the minimax squared error risk is n−
2α

1+2α , achieved by the wavelet
projection estimator

f̂j(n)(x) =

{
1

n

n∑
i=1

Yiz̄j(n)(Xi)

}⊤

z̄j(n)(x)

but 2j(n) = k(n) = n
1

1+2α explicitly depends on the possibly unknown smoothness index α. However,
in general we do not want our statistical procedure to depend on knowledge of α. Adaptive methods
are designed to achieve such goal by building data-adaptive choice of ĵ.

In this note, we introduce one general adaptation scheme called Lepski’s method [?]. To convey
the main idea, we approximate f using dilated and shifted Haar father wavelets/scaling functions
as the basis. In particular, denote

z̄j(·) =
{
zj,ℓ(·) ≡ 2j/2ϕ(2j ·−ℓ), ℓ = 1, 2, · · · , 2j − 1

}
.

A key feature that we will use is no two different functions in the above set have overlap in their
support: if zj,ℓ(x) ̸= 0 then zj,m = 0 ∀m ̸= ℓ,m = 1, 2, · · · , 2j − 1. For a fixed j, we know that f̂j
has variance of order 2j/n and squared bias of order (2j)−2s.

Lepski’s method:

“chooses j as the smallest resolution with ∥f̂j − f̂ℓ∥22 ≲ 2ℓ

n ∀ ℓ > j.”

The algorithm can be defined as, for some τ > 0,

ĵ := min

{
j ∈ J : ∥f̂j − f̂ℓ∥22 ≤ τ

2ℓ

n
∀ ℓ > j, ℓ ∈ J

}
where J = {1, · · · , jmax} with 2jmax ≤ n. We will prove the following theorem in this note, which
says adaptation does not have a penalty on the rate of convergence when estimating functions
from Hölder balls in L2 norm (also true for L∞ norm; but this is generally not true for functional
estimation, which we will consider later).

Theorem 20.
sup

f∈Hölder(s;C)
E∥f̂ĵ − f∥2 ≲ n−

s
1+2s .
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Proof. To facilitate the proof, we need to define the oracle resolution

j∗ :=

{
j ∈ J : (2−j)2s ≲

2j

n

}
.

Thus for any j ≥ j∗, we have (2−j)2s ≲ 2j

n and for any j < j∗, we have (2−j)2s ≫ 2j

n and therefore

2j
∗ ≍ n

1
1+2s . We will compare f̂ĵ with f̂j∗ in our proof. The common strategy in Lepski’s proof is

the following decomposition:

E∥f̂ĵ − f∥2 = E∥f̂ĵ − f∥21{ĵ ≤ j∗}︸ ︷︷ ︸
I

+E∥f̂ĵ − f∥21{ĵ > j∗}︸ ︷︷ ︸
II

.

We now upper bound I and II respectively. I is easy:

I ≲ E
(
∥f̂ĵ − f̂j∗∥2 + ∥f̂j∗ − f∥2

)
1{ĵ ≤ j∗}

≲

√
2j∗

n
+ E∥f̂j∗ − f̄j∗∥2 + E∥f̄j∗ − f∥2

≲ n−
s

1+2s .

Term II is more complicated. But Lepski’s method has the following important property:

Lemma 21. ∀j > j∗, P
(
ĵ = j

)
≲ e−C2j and P

(
ĵ > j∗

)
≲ e−C

′2j
∗
.

Proof. Apparently, the first statement implies the second because

P
(
ĵ > j∗

)
=
∑
j>j∗

P
(
ĵ = j

)
≲
∑
j>j∗

e−C2j ≲ e−C
′2j

∗
.

For some j > j∗, define j− = j − 1. Then ĵ = j implies ĵ > j−, i.e. the Lepski’s criterion must fail
for j− i.e.

P
(
ĵ = j

)
= P

⋃
ℓ≥j

∥f̂j− − f̂ℓ∥22 > τ
2ℓ

n


≤
∑
ℓ≥j

P
(
∥f̂j− − f̂ℓ∥22 > τ

2ℓ

n

)
.
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We decompose ∥f̂j− − f̂ℓ∥22 as follows:

∥f̂j− − f̂ℓ∥22

=

∥∥∥∥∥ 1n
n∑
i=1

Yi

[
z̄j−(Xi)

⊤z̄j− − z̄ℓ(Xi)
⊤z̄ℓ

]∥∥∥∥∥
2

2

=

∫ 1

0

{
1

n

n∑
i=1

Yi

[
z̄j−(Xi)

⊤z̄j−(x)− z̄ℓ(Xi)
⊤z̄ℓ(x)

]}2

dx

=

∫ 1

0

{ ∑2j
−

m=1

(
1
n

∑n
i=1 Yizj−,m(Xi)− βj−,m

)
zj−,m(x)−

∑2ℓ

m=1
1
n (
∑n

i=1 Yizℓ,m(Xi)− βℓ,m) zℓ,m(x)
+f̄j−(x)− f̄ℓ(x)

}2

dx

≲ ∥f̄j− − f̄ℓ∥22︸ ︷︷ ︸
≲ 2ℓ

n
because ℓ>j−1≥j∗

+

∫ 1

0


2j

−∑
m=1

(
1

n

n∑
i=1

Yizj−,m(Xi)− βj−,m

)
zj−,m(x)−

2ℓ∑
m=1

1

n

(
n∑
i=1

Yizℓ,m(Xi)− βℓ,m

)
zℓ,m(x)


2

dx.

The second term can be further upper bounded as follows:

∫ 1

0


2j

−∑
m=1

(
1

n

n∑
i=1

Yizj−,m(Xi)− βj−,m

)
zj−,m(x)−

2ℓ∑
m=1

1

n

(
n∑
i=1

Yizℓ,m(Xi)− βℓ,m

)
zℓ,m(x)


2

dx

≲
∫ 1

0


2j

−∑
m=1

(
1

n

n∑
i=1

Yizj−,m(Xi)− βj−,m

)
zj−,m(x)


2

dx+

∫ 1

0


2ℓ∑
m=1

(
1

n

n∑
i=1

Yizℓ,m(Xi)− βℓ,m

)
zℓ,m(x)


2

dx.

We only need to deal with the second term: by father wavelets (no overlap in support and or-
thonormality)

∫ 1

0


2ℓ∑
m=1

(
1

n

n∑
i=1

Yizℓ,m(Xi)− βℓ,m

)
zℓ,m(x)


2

dx

=
2ℓ∑
m=1

(
1

n

n∑
i=1

Yizℓ,m(Xi)− βℓ,m

)2

.

Let β̂ℓ,m := 1
n

∑n
i=1 Yizℓ,m(Xi). From the assumptions and the particular choice of the basis func-

tions, one can show (left as an exercise) that β̂ℓ,m − βℓ,m = 1
n

∑n
i=1 Yizℓ,m(Xi)− βℓ,m is mean-zero

sub-Gaussian with sub-Gaussian proxy 1/
√
n. As a result, (β̂ℓ,m−βℓ,m)2−E(β̂ℓ,m−βℓ,m)2 is mean-

zero sub-exponential with sub-exponential proxy 1/n. It is also easy to see E(β̂ℓ,m − βℓ,m)
2 ≲ 1/n.
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Then to get the desired tail probability, we need to compute

P

 1

n

2ℓ∑
m=1

(β̂ℓ,m − βℓ,m)
2 ≥ τ ′

2ℓ

n


= P

 2ℓ∑
m=1

(β̂ℓ,m − βℓ,m)
2 − E(β̂ℓ,m − βℓ,m)

2 ≥ τ ′′2ℓ


≤ exp

{
−C12

2ℓ

C22ℓ

}
= exp

{
−C ′2ℓ

}
which Bernstein’s inequality for sum of sub-exponential random variables.

Thus
P
(
ĵ = j

)
≲
∑
ℓ≥j

exp
{
−C ′2ℓ

}
≲ exp

{
−C ′2j

}
.

Then applying Lemma 21, we have

II =
∑

j∈J :j>j∗

E∥f̂ĵ − f∥21{ĵ = j}

Cauchy Schwarz ≤
∑

j∈J :j>j∗

(
E∥f̂ĵ − f∥22

)1/2
P
(
ĵ = j

)1/2
≲

∑
j∈J :j>j∗

(
E∥f̂jmax − f∥22

)1/2
P
(
ĵ = j

)1/2
≲

∑
j∈J :j>j∗

P
(
ĵ = j

)1/2
= |{j ∈ J : j > j∗}| 1

|{j ∈ J : j > j∗}|
∑

j∈J :j>j∗

P
(
ĵ = j

)1/2

Jensen ≤ |{j ∈ J : j > j∗}|

 1

|{j ∈ J : j > j∗}|
∑

j∈J :j>j∗

P
(
ĵ = j

)
1/2

=
{
|{j ∈ J : j > j∗}|P

(
ĵ > j∗

)}1/2

≲ j1/2max exp{−C2j
∗} = o

(
n−

s
1+2s

)
.

Other adaptive estimation strategies include but are not limited to: (1) wavelet thresholding
[????], (2) model selection via penalized empirical risk minimization (see the monumental works
by ? and ? and the review [?]), (3) aggregation [??] or in some sense (Bayesian) model averaging,
and (4) Bayesian nonparametrics [?]. In terms of the robustness of these proof techniques, Bayesian
nonparametrics ⪰ Lepskii’s methods ⪰ Model selection ⪰ Aggregation ⪰ Wavelet Thresholding.
Bayesian nonparametric proofs tend to be quite technical (need to check many many regularity
conditions).
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10 Minimax optimal confidence sets and functional estimation

In this section, we consider a more difficult problem than estimation: How to build honest confidence
set for f ∈ F , the size of which shrinks to zero at an optimal rate in the minimax sense? In this
section, we again assume that the Hölder smoothness s is known. We only consider confidence sets
in L2-norm.

Consider the following oracle setting. If we have a minimax optimal nonparametric estimator
f̂n of f ∈ H(s;B), an asymptotically honest nominal (1− α) confidence set centered around f̂n is
a set Ĉα(f̂n) that satisfies:

lim inf
n

inf
f∈H(s;B)

Pr
f

(
f ∈ Ĉα(f̂n)

)
≥ 1− α. (4)

To tackle this problem, we can consider the following “oracle” confidence set1:

C̃α(f̂n) =
{
f ∈ H(s;B) : |f − f̂n|2 ≤ cαEf [(f̂n − f)2]

}
(5)

where cα is some appropriately chosen constant that depends on α and some other universal con-
stants such as the Hölder ball radius B and the wavelets basis used in the procedure.

Then it is obvious

Pr
f

(
f ∈ C̃α(f̂n)

)
= 1− Pr

f

(
(f̂n(X)− f(X))2 ≥ cαEf [(f̂n − f)2]

)
≥ 1−

Ef [(f̂n − f)2]

cαEf [(f̂n − f)2]
= 1− c−1

α .

If we can estimate Ef [(f̂n−f)2] with an error order o(n−
2α

1+2α )2, then we can build an asymptotically
honest and minimax optimal confidence interval for f .

Can you think of why it is impossible for the size of the interval to be shorter than {Ef [(f̂n−
f)2]}1/2?

At this point, it is not difficult to see in order to estimate Ef [(f̂n−f)2], we need to estimate the

unknown R-valued parameter
∫ 1
0 f(x)

2dx. This parameter can be viewed as a functional (function
of functions):

ψ(f) =

∫
f(x)2dx : H(α;B) → R.

Therefore, we will spend some time to discuss how to estimate functionals.

1An oracle procedure is a procedure that might depend on the unknown parameter but very helpful to build the
actual procedure. For example, by assuming the smoothness s to be known or the density of X to be known is an
implicitly oracle procedure.

2Why this is true? You can try to think what the order of Ef [(f̂n − f)2], the target of interest.
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10.1 Estimation of statistical functionals

ψ(f) is called a quadratic functional. In high-dimensional linear regression, when people posit
the model Y = X⊤β + noise, people are often interested in estimating β or βj or

∑d
j=1 βj , which

are in fact linear functionals. If you have heard of debiased lasso, you can essentially re-develop
the entire theory of debiased lasso (independently developed by Andrea Montanari and Cun-Hui
Zhang) based on what we will cover in this section. For linear regression problems, a quadratic
functional of interest is β⊤Σβ, where Σ = EXX⊤ is the population Gram matrix.

In this section, to make things more interesting, I will assume the marginal distribution of X
to have an unknown density g on [0, 1], instead of uniform distribution. Therefore we consider the
following quadratic functional:

ψ(θ) = Ef(X)2 =

∫ 1

0
f(x)2p(x)dx. (6)

If we assume θ = (f, p) to lie in some infinite-dimensional function spaces Θ = F×P, then ψ(θ) is a
low-dimensional parameter of infinite-dimensional statistical models. Low-dimensional parameters
of infinite-dimensional statistical models can also be viewed as a semiparametric statistical problem.
One very unique philosophy that is temporarily only advocated in statistics is that in data analysis
(more importantly in the design stage), we should try hard to think about the low-dimensional
parameters that we want to infer from some complex probabilistic models and only consider optimally
learn those parameters instead of the entire model. This philosophy is very much against our instinct
in particular for physicists or biologists because in those fields it seems that developing a model
that can explain the phenomenon is much more important. But in social science, economics, and
political sciences, this philosophy is an easy sell.

First let’s assume p to be known. How to estimate a statistical functional like ψ(θ)? We can
consider the following näıve approach first: the so-called plug-in estimator.

ψ(θ̂n) = ψ(f̂n) =

∫
f̂n(x)

2p(x)dx = β̂⊤k

∫
zk(x)zk(x)

⊤p(x)dxβ̂k = β̂⊤k Σkβ̂k

where we estimate f by the usual wavelet projection f̂n with k = n
1

1+2α . If p is unknown, we
could “estimate” the unknown p in the plug-in estimator ψ(f̂n) by the empirical measure of X and
construct the following estimator

ψ(θ̂n) = ψ(f̂n, p̂n,emp) =
1

n

n∑
i=1

f̂n(Xi)
2

where the empirical measure estimator p̂n,emp of p is computed using a sample of size n independent

from the n samples used to compute f̂n. This is the so-called “sample splitting” strategy, which is
very useful to simplify the mathematical analysis. Many people nowadays also advocate the use of
sample splitting in practice as a default statistical principle3.

3But unfortunately this strategy seems to be frowned upon by people outside statistics, with the “argument” that
this strategy is not fully using the data...
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We simply look at the bias of ψ(θ̂n):

E
[
ψ(θ̂n)− ψ(θ)

]
= E

[∫ 1

0
f̂n(x)

2 − f(x)2dx

]
= E

[∫ 1

0
(f̂n(x)− f(x))(f̂n(x) + f(x))dx

]
≤ E

[
∥f̂n − f∥2∥f̂n + f∥2

]
≤
{
E
[
∥f̂n − f∥22

]}1/2 {
E
[
∥f̂n + f∥22

]}1/2

≲
{
E
[
∥f̂n − f∥22

]}1/2
≍ n−

α
1+2α .

Now the question is if we can construct an estimator with an improved bias.

10.2 Bias correction by using first-order influence functions/functional gradi-
ents

I will describe an estimator first, followed by showing its underlying mathematical meaning.
Here for simplicity, we again consider to have 2n samples. The first half of the sample is used to

compute f̂n and the second half of the sample is used to compute the estimator of ψ(θ). Consider
the following (first-order) estimator of ψ(θ).

ψ̂1(f̂n) =
2

n

n∑
i=1

Yif̂n(Xi)−
∫ 1

0
f̂n(x)

2p(x)dx

or ψ̂1(θ̂n) =
2

n

n∑
i=1

Yif̂n(Xi)−
1

n

n∑
i=1

f̂n(Xi)
2.

(7)

We first analyze its bias, conditioning on the data used to compute f̂n, which we denote as
Onuis

4:

E
[
ψ̂1(f̂n)− ψ(θ)|Onuis

]
= 2E

[
Y f̂n(X)

]
−
∫ 1

0
f̂n(x)

2p(x)dx−
∫ 1

0
f(x)2p(x)dx

=

∫
{2f(x)f̂n(x)− f̂n(x)

2 − f(x)2}p(x)dx

= −
∫
{f(x)− f̂n(x)}2p(x)dx = −∥f − f̂n∥22.

Then obviously, the marginal bias is

E
[
ψ̂1(f̂n)− ψ(θ)

]
= −E

[
∥f − f̂n∥22

]
≍ n−

2s
1+2s

which is o(n−
s

1+2s ), a much improved rate (still worse than the ideal case o(n−
2s

1+2s )). You may
calculate the variance on your own. Now let us dissect what happens here and what is the underlying
mathematical structure.

4This is because in semiparametric statistics, ψ(θ) is the parameter of interest and f is a nuisance parameter.
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We first look at

E
[
ψ̂1(θ)− ψ(θ)

]
= E

[
2Y f(X)− f(X)2 −

∫ 1

0
f(x)2p(x)dx

]
.

It turns out that the random variable inside the expectation, 2Y f(X) − f(X)2 − ψ(θ), is the
influence function/influence curve/canonical gradient ψ̇θ(O) of ψ(θ), where O = (X,Y ), evaluated
at the nuisance parameter θ. And the estimator ψ̂1(f̂n) is nothing but correcting the bias of
the plug-in estimator ψ(f̂n) by the influence function ψ̇

f̂n
with the f component of the nuisance

parameter θ evaluated at f̂n:

ψ(f̂n) +
1

n

n∑
i=1

ψ̇
f̂n
(Oi) =

∫
f̂n(x)

2p(x)dx+
2

n

n∑
i=1

Yif̂n(Xi)−
∫ 1

0
f̂n(x)

2p(x)dx−
∫ 1

0
f̂n(x)

2p(x)dx.

Similarly,

ψ(θ̂n) +
1

n

n∑
i=1

ψ̇
θ̂n
(Oi) =

1

n

n∑
i=1

f̂n(Xi)
2 +

2

n

n∑
i=1

Yif̂n(Xi)−
1

n

n∑
i=1

f̂n(Xi)
2 − 1

n

n∑
i=1

f̂n(Xi)
2.

The influence function ψ̇θ(O) has the following important property: Eθψ̇θ(O) ≡ 0 for any θ, as
long as θ in the expectation and θ in the influence function coincide.

To explain what is an influence function, we use the following functional Taylor expansion
when assuming the underlying functional is sufficiently smooth (related to but not the smoothness
nuisance parameter): Plug-in estimator can be viewed as a 0-th order Taylor expansion of the
functional ψ(θ)

ψ(θ) = ψ(θ̂n) +O(∥θ − θ̂n∥)

whereas ψ̂1(θ̂n), by the above reasoning, can be viewed as a 1-st order Taylor expansion:

ψ(θ) = ψ(θ̂n) + ψ′
θ̂n
(θ − θ̂n) +O(∥θ − θ̂n∥2). (8)

But for a functional ψ(θ), what is its first-order functional derivative ψ′
θ̂n
(θ− θ̂n) whose nuisance

parameter is taken a value θ̂n, mapping θ − θ̂n to R? In fact, it is∫
ψ̇
θ̂n
(o)
(
dP (o; θ)− dP (o; θ̂n)

)
for some (mean-zero under law P

θ̂n
) variable ψ̇

θ̂n
(o). You can learn the above results in any books

related to Calculus of Variation, e.g. ?.
Now the question becomes what is this mysterious ψ̇

θ̃
(o) for any θ̃: Consider a perturbation θ̃t

such that θ̃t=0 = θ̃. We consider the following functional differentiation operation, which applies to
all examples we consider in this note and almost all examples people are dealing with for smooth
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functionals in practice,

d

dt
ψ(θ̃t)

∣∣∣∣
t=0

= E
θ̃

[
ψ̇
θ̃
(O) · S

θ̃
(O)
]
=

∫
ψ̇
θ̃
(o)

∂ log p(o; θ̃t)

∂t

∣∣∣∣∣
t=0

p(o; θ̃)do =

∫
ψ̇
θ̃
(o)

∂p(o; θ̃t)

∂t

∣∣∣∣∣
t=0

do

=

∫
ψ̇
θ̃
(o) lim

t→0

p(o; θ̃t)− p(o; θ̃)

t
do = lim

t→0

∫
ψ̇
θ̃
(o)

p(o; θ̃t)− p(o; θ̃)

t
do

= lim
t→0

1

t

{∫
ψ̇
θ̃
(o)dP (o; θ̃t)−

∫
ψ̇
θ̃
(o)dP (o; θ̃)

}

= lim
t→0

1

t

E
θ̃t
ψ̇
θ̃
(O)− E

θ̃
ψ̇
θ̃
(O)︸ ︷︷ ︸

≡0


(9)

where S
θ̃
(O) is the score of the model and ψ̇

θ̃
(O) is the first-order influence function of the func-

tional. The above influence function representation is in fact a manifestation of the celebrated
Riesz representation theorem in functional analysis.

Below we will use the quadratic functional as an example to show you how to derive the influence
function ψ̇

θ̃
(O) using the above Riesz representation:

1. Write down ψ(θt) explicitly:

ψ(θt) =

∫
ft(x)

2pt(x)dx =

∫
x

{∫
y
ypt(y|x)dy

}2

pt(x)dx.

2. Take derivative over t and set t = 0; “create” scores for the joint law pt(x, y) = pt(y|x)pt(x)
(thus d

dt |t=0 log pt(x, y) =
d
dt |t=0 log pt(y|x)+ d

dt |t=0 log pt(x) in turn gives Sθ(X,Y ) = Sθ(Y |X)+
Sθ(X)):

d

dt
|t=0ψ(θt)

=

∫
x
f(x)2

d

dt
|t=0pt(x)dx+

∫
x
2f(x)p(x)

{∫
y
y
d

dt
|t=0pt(y|x)dy

}
dx

=

∫
x
f(x)2

(
1

p(x)

d

dt
|t=0pt(x)

)
p(x)dx+

∫
x
2f(x)p(x)

{∫
y
y

(
1

p(y|x)
d

dt
|t=0pt(y|x)

)
p(y|x)dy

}
dx

=

∫
x
f(x)2

(
d

dt
|t=0 log pt(x)

)
p(x)dx+

∫
x
2f(x)p(x)

{∫
y
y

(
d

dt
|t=0 log pt(y|x)

)
p(y|x)dy

}
dx

=

∫
x
f(x)2Sθ(x)p(x)dx+

∫
x
2f(x)p(x)

{∫
y
ySθ(y|x)p(y|x)dy

}
dx

=

∫
x
f(x)2Sθ(x)p(x)dx+

∫
x

∫
y
2f(x)ySθ(y|x)p(y|x)p(x)dydx

= Eθ
[
f(X)2Sθ(X)

]
+ Eθ [2Y f(X)Sθ(Y |X)] .

This seems to be quite close to what we eventually want (E[ψ̇θ(X,Y )Sθ(X,Y )]).
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3. At this step, recall the following facts about the marginal and conditional scores:

Eθ[Sθ(X)] ≡ 0, Eθ [Sθ(Y |X)|X] ≡ 0, and Sθ(X,Y ) = Sθ(X) + Sθ(Y |X)

Now for the first term, we can directly add Sθ(Y |X) because

Eθ[f(X)2Sθ(Y |X)|X] = f(X)2Eθ[Sθ(Y |X)|X] = 0.

Thus Eθ
[
f(X)2Sθ(X)

]
= Eθ

[
f(X)2(Sθ(X) + Sθ(Y |X))

]
= Eθ

[
f(X)2Sθ(X,Y )

]
.

For the second term, we can further rewrite it as follows

Eθ [2Y f(X)Sθ(Y |X)] = Eθ
[
(2Y f(X)− 2f(X)2)Sθ(Y |X)

]
.

Though we can subtract any function of X from 2Y f(X), we choose this function to be
2f(X)2 because f(X)2 = f(X)Eθ[Y |X], which means Eθ

[
2Y f(X)− 2f(X)2|X

]
≡ 0. Thus

we can now add any function of X to Sθ(Y |X) and we choose this function to be Sθ(X):

Eθ [2Y f(X)Sθ(Y |X)] = Eθ
[
(2Y f(X)− 2f(X)2)Sθ(Y |X)

]
= Eθ

[
(2Y f(X)− 2f(X)2)(Sθ(X) + Sθ(Y |X))

]
= Eθ

[
(2Y f(X)− 2f(X)2)Sθ(X,Y )

]
.

Combining the above two terms we have

d

dt
|t=0ψ(θt) = Eθ

[
(2Y f(X)− 2f(X)2 + f(X)2)Sθ(X,Y )

]
= Eθ

[
(2Y f(X)− f(X)2)Sθ(X,Y )

]
.

4. We are one step away. Since we also need Eθψ̇θ(X,Y ) = 0, we can simply recenter 2Y f(X)−
f(X)2 by a constant (its expectation

∫
f(x)2p(x)dx = ψ(θ)). Thus eventually, we have

ψ̇θ(X,Y ) = 2Y f(X)− f(X)2 − ψ(θ).

For a more comprehensive introduction to semiparametric theory, see ?????? and the notes
written by Yen-Chi Chen.

Remark 22. In the beginning of this section, I mentioned that the approach in this section is
essentially what is going on for debiased lasso. Can you see why after reading the following papers
???

10.3 Higher-order influence functions – A unified framework for smooth func-
tional estimation

In this section, we investigate if the above first-order estimator can still be improved. Amazingly,
I will show an estimator, under the assumption that g is known, to achieve the following rate of
convergence that is conjectured to be minimax optimal for ψ(θ) = E[f(X)2]:

inf
ψ̂n

sup
θ∈Θ

Eθ
[
(ψ̂n − ψ(θ))2

]
≲

{
n−1 s > 1

4 ,

n−
8s

1+4s s ≤ 1
4 .

(10)
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So the optimal rate exhibits a phase transition phenomenon and very interestingly, it is possible to
obtain the parametric n−1 rate for functionals even under an infinite-dimensional statistical model.
Thus when s > 1

4 , this nonparametric problem has parametric behavior.

Consider the following estimator: choose k′ = max{n, n
2

1+4s },

ψ̂2,k′(θ̂n) = ψ̂1(θ̂n) +
1

n(n− 1)

∑
1≤i1 ̸=i2≤n

(Yi1 − f̂n(Xi1))zk′(Xi1)
⊤Σ−1

k′ zk′(Xi2)(Yi2 − f̂n(Xi2))

where Σk′ = E[zk′(X)zk′(X)⊤]. The added term is actually the second-order influence function of
ψ(θ) evaluated at θ̂n

5. To see how ψ̂2,k′(θ̂n) improves upon ψ̂1(θ̂n), we first analyze its bias:

Eθ
[
ψ̂2,k′(θ̂n)− ψ(θ)|Onuis

]
= Eθ

[
ψ̂1(θ̂n)− ψ(θ)|Onuis

]
+ Eθ

[
(f(X)− f̂n(X))zk′(X)⊤|Onuis

]
Σ−1
k′ Eθ

[
zk′(X)(f(X)− f̂n(X))|Onuis

]
=
{
Eθ
[
(f(X)− f̂n(X))zk′(X)⊤|Onuis

]
Σ−1
k′

}
Σk′

{
Σ−1
k′ Eθ

[
zk′(X)(f(X)− f̂n(X))|Onuis

]}
− Eθ

[
(f(X)− f̂n(X))2

]
.

Speculating the red term carefully, it is not difficult to see it is actually the inner product of the
following quantity:{

Eθ
[
(f(X)− f̂n(X))zk′(X)⊤|Onuis

]
Σ−1
k′

}
zk′(x) ≡ β⊤k′zk′(x)

but βk′ is now the regression coefficient of the regression (or L2 linear projection) between f(X)−
f̂n(X) (or equivalently Y − f̂n(X)) and the k′-dimensional basis zk′ . Since it is not difficult to see
f − f̂n belongs to H(s;B), we have ∥f − f̂n − β⊤k′zk′∥∞ ≍ k′−s and in fact, finishing the above
calculations, we have

Eθ
[
ψ̂2,k′(θ̂n)− ψ(θ)|Onuis

]
= Eθ

[
β⊤k′zk′(X)zk′(X)⊤βk′ − (f(X)− f̂n(X))2

]
= Eθ

[{
f(X)− f̂n(X)− β⊤k′zk′(X)

}2
]
≲ k′−2s.

We are left to show the variance of ψ̂2,k′(θ̂n), which is a sum between a sum of i.i.d. (of order
1/n) and a second-order U -statistic (of order (1/n)∨(k′/n2)). The variance of U -statistic in general
can be computed via Hoeffding’s decomposition. This part will be left as an exercise. By balancing

the bias-variance trade-off, we have k′−4s ≍ 1
n ∨ k′

n2 . Thus k
′ ≍ n

2
1+4s , which in turn gives us

n−
8s

1+4s ∨ n−1.

When g is known, it is easy to show the above rate to be tight; see ?.

When g is unknown, looking at ψ̂2,k′(θ̂n), the only unknown term is Σ−1
k′ = {Eθ[zk′(X)zk′(X)⊤]}−1 ={∫

zk′(x)zk′(x)
⊤p(x)dx

}−1
. How to solve this problem? If we assume g ∈ H(sg;B), then we

5Here I am not being very rigorous. If you are interested in this theory, you should read ??. But be cautious with
typos.
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can estimate g by ĝ again using the sub-data Onuis and optimal wavelet bases and estimate∫
zk′(x)zk′(x)

⊤p(x)dx by Σ̂k′ ≡
∫
zk′(x)zk′(x)

⊤ĝ(x)dx. But now one needs to be careful about
the error introduced by ĝ − g. Eventually, one needs to correct such bias by adding more bias
correction terms, by

ψ̂m,k′ (θ̂n)

= ψ̂2,k′ (θ̂n) +
m∑

j=3

(−1)j
(n− j)!

n!

∑
1≤i1 ̸=···≠ij≤n

(Yi1 − f̂(Xi1 ))zk′ (Xi1 )
⊤


j∏

ℓ=3

Σ̂−1
k′

(
zk′ (Xℓ)zk′ (Xℓ)

⊤ − Σ̂k′

) Σ̂−1
k′ zk′ (Xi2 )(Yi2 − f̂(Xi2 )).

Then we choose m appropriately. But if we do not want to assume any smoothness on g, we
eventually need m→ ∞.

One final caveat: when letting m be large, the variance of ψ̂m,k′(θ̂n) will increase when k′ > n
(i.e. when s < 1/4). Then one also needs to cut out certain terms in the basis function zk′ through
a very delicate hyperbolic cut scheme detailed in Section 4 of ?.

Remark 23. The concept of higher-order influence functions or higher-order functional gradi-
ents first appeared in a series of works by Johan Pfanzagl [??], who generalized the information
bound calculations for parametric-nonparametric (nowadays called semiparametric) models initi-
ated (again!) by Charles Stein [?]; also see ? and ?. In 2004, when studying the problem of optimal
sequential decision making (nowadays called reinforcement learning), ? first reported partial re-
sults on higher-order influence functions, a then on-going collaborating project with Aad van der
Vaart. These results eventually culminated in Lingling Li and Eric Tchetgen Tchetgen’s joint PhD
Thesis [??]. ? developed an interesting potentially alternative strategy by diverging numbers of
bootstrapping. An earlier version of this bootstrap idea could be traced back to Guang Cheng’s
PhD Thesis [?]; also see the Bayesian version by ?. Cun-Hui Zhang and Pierre Bellec recently
developed a second-order theory for high-dimensional sparse linear regression problems, coined as
“Second-Order Stein” [??]. Higher order influence functions, and all these above works, are about
higher-order accuracy of statistical procedures. Yet most contemporary statistical methods and
theory are about first-order accuracy.

In a nutshell, the higher-order influence function approach simply keeps Taylor-expanding the
underlying functional ψ(θ) up to a certain order, and hope that

ψ(θ) = ψ(θ̂n) +
m∑
j=1

ψ
(j)

θ̂n
(θ − θ̂n)

⊗j +O(∥θ − θ̂n∥m+1). (11)

Anm-th order influence function is the first-order influence function of an (m−1)-th order influence
function, and can be calculated via the same calculation as that of the first-order influence function.

Higher-order influence functions suggest the following interesting phenomenon: to obliviate any
assumptions on the marginal density of X, the estimator is in the computational complexity class
Exp.

Remark 24. The following open problem, though extremely simple to describe, has puzzled Robins
for almost 20 years. Many people have tried but failed. Now no one is working on this problem
because the risk is too high and there are tons of new problems due to deep learning. People who
have tried this problem believe some significant intellectual leap is required to solve this problem.
I simply paraphrase the problem statement from ?.
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X ∈ [0, 1]d is random (random design) and the effective smoothness s/d < 1/4 but s > 1.
Does there exist an estimator of E[f(X)2] =

∫
[0,1]d{E[Y |X = x]}2p(x)dx that converges at

the conjectured optimal rate n−
4s

d+4s when s/d < 1/4 without any condition on g except that
g exists and is bounded above and below? Since one does not want to put any structural
assumptions on g, it might be reasonable to conjecture that the behavior should be similar
to the case when g has zero smoothness, i.e. X is fixed. When X is fixed, interestingly ?
have shown that the rate of convergence should be at a much slower order n−2s/d instead.

However, when s/d < 1/4 and s < 1, ? construct a clever but non-generalizable estimator

that converges at rate n−
4s

d+4s , without requiring any smoothness assumption on the density
of X (except that X is random instead of fixed). So it seems that even just a little bit
randomness should help a lot!

Robins has been trying to find an answer to this question without success for a number

of years; one of Robins’ students Lingling Li conjectured that when s > 1 the rate n−
4s

d+4s is
not achievable and should depend on the smoothness of g, unlike the case s ≤ 1 but no one
has any idea how to establish a matching lower bound for the rate conjectured by Lingling.
He suggested that it is now time for some crowd-sourcing. At a first sight, a recent paper
by ? comes very close, but it turns out they are equally far from the final results as most
people are.

There are several questions left unanswered (actually open till today):

1. How to adapt over unknown smoothness s without knowledge on g? ? partially answered
this question by assuming g to be sufficiently smooth. But the result below this smoothness
condition is very difficult to obtain (this is because exponential tail inequalities for higher-
order U -statistics are too loose to use).

2. Another open problem is if it is possible to construct optimal adaptive confidence intervals
for low-dimensional functionals.

11 Adaptive minimax optimal inference

As I mentioned in class, it is very difficult for Lespki’s method to pinpoint the “correct” resolution
j∗ or equivalently estimate the “correct” smoothness. If on the contrary it is possible to do so,
we would be able to construct the so-called honest and minimax adaptive confidence sets for f in
Hölder balls, centered at an adaptive minimax rate-optimal estimator f̂ĵ . But it has been proven
to be impossible to construct such adaptive confidence sets for the entire Hölder ball; see Chapter
8.3 of ?. The state-of-the-art is that we have to remove a lot of functions from Hölder ball and
focus only on the so-called “self-similar” classes. Due to time constraint, for now I am planning to
leave this part for self-study.

12 Final remarks

There are other problems with a similar flavor to the problems considered in this short note: e.g.
estimating the sparsity of a high-dimensional sparse linear model [?]. Also, one can actually embed
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high-dimensional linear models into the nonparametric statistics framework by considering the
so-called re-arranged Besov-type spaces. Unlike classical Besov-type spaces, for which the Fourier
coefficients decay geometrically with the energy/frequency of the basis functions, re-arranged Besov-
type spaces do not have an a-priori order on the basis functions and thus selection is necessary.
The key distinction between high-dimensional statistics and classical non-parametric statistics can
be understood via this mere fact.

In this chapter, we have explored several techniques of proving (adaptive) minimax upper and
lower bounds through the lens of the theory of function spaces. All these results now have analogues
in Bayesian settings and deep learning settings. Most of the literature focused on estimation of
a regression function or a conditional expectation. A more challenging problem is what if the
function is a solution to a complicated stochastic PDE. This direction will become more important
as nowadays large-scale/high-dimensional PDEs start to be routinely solved by deep learning and
stochastic gradient descent. But the data that are used to parameterize the PDEs are often noisy
physical measurements and how to quantify the uncertainty in a statistically rigorous way will
become an important topic in statistics, e.g. ??.

A Proof of Nr,h approximating δ-function

We need to apply the following result:

Proposition 1. f : R → R a measurable function and K ∈ L1 a kernel function s.t.
∫
RK(x)dx =

1. Then, denoting Kh(·) = h−1K(·/h)

1. f bounded on R and continuous at x ∈ R ⇒ Kh ∗ f(x) → f(x) as h→ 0 pointwise.

2. f bounded and uniformly continuous on R ⇒ ∥Kh ∗ f − f∥∞ → 0 as h→ 0.

3. f ∈ Lp for some 1 ≤ p <∞ ⇒ ∥Kh ∗ f − f∥p → 0 as h→ 0.

Now by the definition of Nr,h, it is easy to see that ∥Nr,h∥ = 1 so Nr,h is a kernel like K in
Proposition 1. Then applying Proposition 1 completes the proof. We are left to show Proposition
1.

Proof of Proposition 1.

Kh ∗ f(x)− f(x) =

∫
R

1

h
K

(
x− y

h

)
f(y)dy − f(x)

=

∫
R
K(u)(f(x− hu)− f(x))du.

Then parts 1 and 2 are obvious from the above result (consult the proof of Proposition 4.1.1 of ?
if you are not convinced yet). For part 3, we need to use a famous result from functional analysis –
the Minkowski integral inequality that helps you exchange integrals; see Lemma 25. Then we have∥∥∥∥∫

R
K(u)(f(·− hu)− f(·))du

∥∥∥∥
p

≤
∫
R
|K(u)|∥f(·− hu)− f(·)∥pdu.

Since ∥f(·−hu)−f(·)∥p → 0 as h→ 0 pointwise for u and ∥f(·−hu)−f(·)∥p is uniformly bounded
by 2∥f∥p, then by DCT, the above display will converge to 0.
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Lemma 25 (Minkowski’s integral inequality). For a bivariate function f(x, y), the following holds:{∫
Y

∣∣∣∣∫
X
f(x, y)dx

∣∣∣∣p dy}1/p

≤
∫
X

{∫
Y
|f(x, y)|pdy

}1/p

dx.

Proof. When p = 1, it follows from Fubini’s theorem. When p > 1, then∫
Y

∣∣∣∣∫
X
f(x, y)dx

∣∣∣∣p dy =

∫
Y

∣∣∣∣∫
X
f(x, y)dx

∣∣∣∣p−1 ∫
X
f(x, y)dxdy

≤
∫
Y

∣∣∣∣∫
X
f(t, y)dt

∣∣∣∣p−1 ∫
X
|f(x, y)|dxdy

=

∫
Y

∫
X

∣∣∣∣∫
X
f(t, y)dt

∣∣∣∣p−1

|f(x, y)|dxdy

=

∫
X

∫
Y

∣∣∣∣∫
X
f(t, y)dt

∣∣∣∣p−1

|f(x, y)|dydx

⋆
≤
∫
X

{∫
Y

∣∣∣∣∫
X
f(t, y)dt

∣∣∣∣q(p−1)

dy

}1/q {∫
Y
|f(x, y)p|dy

}1/p

dx

=

{∫
Y

∣∣∣∣∫
X
f(t, y)dt

∣∣∣∣p dy}1/q ∫
X

{∫
Y
|f(x, y)p|dy

}1/p

dx

where in step ⋆ we use Hölder’s inequality with q = p/(p − 1). Finally dividing both sides by{∫
Y
∣∣∫

X f(t, y)dt
∣∣p dy}1/q, we have, by 1− 1/q = 1/p,{∫

Y

∣∣∣∣∫
X
f(x, y)dx

∣∣∣∣p dy}1/p

=

{∫
Y

∣∣∣∣∫
X
f(x, y)dx

∣∣∣∣p dy}1−1/q

≤
∫
X

{∫
Y
|f(x, y)p|dy

}1/p

dx.

B Multidimensional extension

B.1 Sobolev spaces

Let m = (m1, · · · ,md) be non-negative integers and define |m| = m1 + · · · + md. Given x =
(x1, · · · , xd) ∈ Rd, write xm = xm1 · · ·xmd and

Dm =
∂|m|

∂xm1
1 · · · ∂xmd

d

.

Then Sobolev space on ([a, b])d is

W d
m,p :=

{
f ∈ Lp([a, b]

d) : Dαf ∈ Lp([a, b]
d) ∀ |α| ≤ m

}
.
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B.2 Besov spaces

Two good references for multidimensional extension of Besov spaces are ? and ?.

C Reproducing Kernel Hilbert Space (RKHS)

RKHS has been a quite important topic in recent history of statistical learning theory [??], in which
people try to look for spaces that are learnable in high dimensional or nonlinear settings. RKHS
is an extremely small space compared to what we have covered in this note (Hölder, Besov, and
Sobolev spaces with d > 1). But recent progress in deep learning theory (such as Neural Tangent
Kernel [???] and Weinan E’s works) definitely suggests that RKHS should still be quite useful in
the future.

RKHS is a class of very smooth functions defined via the so-called Mercer kernel.

Definition 26. A Mercer kernel is a continuous function K : [a, b] × [a, b] → R s.t. K(x, y) =
K(y, x) (symmetric) and K is p.s.d. in the following sense:

n∑
i=1

n∑
j=1

K(xi, xj)cicj ≥ 0

for all finite sets of points x1, · · · , xn ∈ [a, b] and all reals c1, · · · , cn.

We then have the famous Mercer’s theorem:

Theorem 27. Suppose (1) K : X × X → R is symmetric and supx,yK(x, y) < ∞, and define the
operator

TKf(x) =

∫
X
K(x, y)f(y)dy,

and (2) TK : L2(X) → L2(X) is p.s.d.:
∫
X
∫
XK(x, y)f(x)f(y)dxdy ≥ 0 ∀ f ∈ L2(X). Let λi,Ψi be

the eigenvalues and eigenfunctions of TK , i.e.∫
K
K(x, y)Ψi(y)dy = λiΨi(x).

Then
∑

i λi <∞, supxΨi(x) <∞ and

K(x, y) =

∞∑
i=1

λiΨi(x)Ψj(y).

So with a Mercer kernel, we can always use eigen-decomposition of the Mercer kernel to obtain
a set of basis functions.

Definition 28 (RKHS). Given a kernel K, denote Kx(y) = K(x, y). Let

H0,K = span

f : f(x) =

k∑
j=1

βfjKxj (x)

 ,
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with the following inner product: Given any two f and g from H0, define

⟨f, g⟩K =
∑
i

∑
j

βfi β
g
jK(xi, xj).

Then H0,K is an RKHS generated by K.

Key property of RKHS – reproducing! ⟨f,Kx⟩ =
∑

i β
f
i K(xi, x) = f(x) and ⟨Kx,Kx⟩ =

K(x, x). Here TK [·](x) =
∫
K(x, y) · (y)dy is called an “evaluation functional”: input is a function

and output is a point on that function. RKHS has continuous evaluational functional but general
Hilbert spaces do not (because the evaluation functional has the δ function as the kernel).

D Other references on function spaces

Once you have a good understanding of function spaces, you can try to read this post from Terence
Tao and a paper by Richard Nickl [?], together with its reference, in particular the papers/books
by Triebel and colleagues.
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