
Advanced mathematical statistics August 30, 2025

Part III. Theory for M -estimation and MLE

Instructor: Lin Liu

1 A summary of minimax hypothesis testing and outlook

Usually the proof goes according to the following steps:

1. Ansatz a worst-case perturbation over the null hypothesis that belongs to the alternative:
not too far from the null but far enough to be in the alternative;

2. Compute f -divergence between the product measure under the null and the product measure
of the worst-case instance to show it is O(1) so difficult to separate information theoretically;

3. At step 2, you have completed the lower bound proof; for upper bound, simply provide a test
statistic whose testing risk equals the lower bound.

But note that in reality, one often has a natural test statistic, the rate of which looks “right”.
Then one proceeds to prove if a matching lower bound exists.

In later lectures, we will revisit hypothesis testing problems in two occasions:

1. Deriving estimation lower bound via hypothesis testing problems.

2. What we have done so far is about deriving the information theoretical limit of hypothesis
testing problems: Neyman-Pearson lemma tells us for single vs. single test, likelihood ratio
is the optimal test; In general, we can use f -divergence to quantify the “distance” between
H0 and Ha, which further implies if or not the optimal test can succeed in distinguishing
between H0 and Ha. In either case, the search space of all tests is any measurable function
of the observed data, with no restriction on the computational hardness of the search space.

Low-degree polynomial conjecture: in Sam Hopkins’ PhD thesis [? ], he made the following
important conjecture

Conjecture 1. If a statistical problem cannot be solved using statistics based on low-
degree polynomials, then the statistical problem is algorithmically/computationally
hard.

This conjecture has been refuted by [? ], but [? ] posed a modified conjecture dealing with
the counter-examples. In general, people believe this conjecture to be reasonable.

2 Cramér-Rao lower bound and van Trees inequality

Neyman-Pearson is the most elementary lower bound in hypothesis testing. The counterpart in
estimation is Cramér-Rao lower bound. It says the following:
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Theorem 2 (Cramér-Rao lower bound). In a statistical model parameterized by θ, θ̂ is an unbiased
estimator of θ based on data X, I(θ) is the corresponding Fisher information. Then

varθ(θ̂) ⪰ I(θ)−1. (1)

where I(θ) = Eθ

[(
∂ℓ(X;θ)

∂θ

)⊗2
]
where ℓ(X; θ) is the log-likelihood function of parameter θ with data

X.

Proof. We prove the theorem for the scalar case with n i.i.d. data so X = (X1, · · · , Xn)
⊤ to help

you understand all the concepts related to MLE better. Denote the score function for one data as

S(X; θ) =
∂ℓ(X; θ)

∂θ
=
∂ log fX(X; θ)

∂θ
.

Obviously Eθ(S(X; θ)) = 0 and
∑n

i=1 S(Xi; θ) is the score for all n data. Then

covθ

(
θ̂,

n∑
i=1

S(Xi; θ)

)
= Eθ(θ̂

n∑
i=1

S(Xi; θ))

= Eθ

(
θ̂

n∑
i=1

1

fXi(Xi; θ)

∂fXi(Xi; θ)

∂θ

)

=

∫
θ̂(x1, · · · , xn)

n∑
i=1

∂fXi(xi; θ)

∂θ

∏
j ̸=i

fXj (xj ; θ)

 d(x1, · · · , xn)

=

∫
θ̂(x1, · · · , xn)

∂

∂θ

n∏
i=1

fXi(xi; θ)d(x1, · · · , xn)

=
∂

∂θ

∫
θ̂(x1, · · · , xn)

n∏
i=1

fXi(xi; θ)d(x1, · · · , xn)

= 1.

where the last line is due to the unbiasedness of θ̂. Lastly, we use Cauchy-Schwarz inequality to
bound 1:

1 ≤ varθ(θ̂)varθ

(
n∑

i=1

S(Xi; θ)

)

⇒ varθ(θ̂) ≥
1

varθ (
∑n

i=1 S(Xi; θ))
=

1

In(θ)
.

How about Bayesian analog? Just marginalizing over the above inequality:

Eθ∼Π

[
varθ(θ̂)

]
⪰ Eθ∼Π

[
I(θ)−1

]
. (2)

Here comes van Trees inequality, which does not need θ̂ to be unbiased if we introduce a prior.
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Theorem 3 (van Trees). In a statistical model parameterized by θ, θ̂ is any estimator of θ based
on data X, I(θ) is the Fisher information of X. For a suitably chosen (prior) probability measure
Π with density π on Θ, we have

Eθ∼π

[
EX∼Pθ

(θ̂ − θ)2
]
≥ {Eθ∼π [I(θ)] + I(π)}−1 (3)

where I(π) =
∫
θ∈Θ

(
∂ log π(θ)

∂θ

)⊗2
π(θ)dθ is the Fisher information of the prior.

Proof. The proof is elementary. We introduce a perturbed joint distribution of the likelihood and
prior:

πh(x, θ) = p(x|θ + h)π(θ + h) (4)

for h small. Note that for this perturbation to be well-defined, we need to choose π to be smooth
with compact support. With this new perturbed measure, we can show

Eh(θ̂ − θ) =
∫
θ

∫
x
(θ̂(x)− θ)p(x|θ + h)π(θ + h)dxdθ

=

∫
θ′

∫
x
(θ̂(x)− θ′ + h)p(x|θ′)π(θ′)dxdθ′

= E0(θ̂ − θ) + h.

(5)

Define the first order difference

Dh(x, θ) =
πh(x, θ)− π0(x, θ)

π0(x, θ)
. (6)

Obviously

E0Dh(x, θ) =

∫
θ

∫
x

(
πh(x, θ)

π0(x, θ)
− 1

)
π0(x, θ)dxdθ = 0

which is essentially the score. Now, invoking (5), we have

E0Dh(x, θ)(θ̂ − θ) = Eh(θ̂ − θ)− E0(θ̂ − θ) = h.

Similar to the proof of Cramér-Rao lower bound, we use Cauchy-Schwarz inequality

E0Dh(x, θ)
2E0(θ̂ − θ)2 ≥ h2

⇔
∫

(πh(x, θ)− π0(x, θ))2

π0(x, θ)
dxdθE0(θ̂ − θ)2 ≥ h2

⇔
(∫

πh(x, θ)
2

π0(x, θ)
dxdθ − 1

)
E0(θ̂ − θ)2 ≥ h2

⇔
(∫

π(θ + h)2

π(θ)

p(x|θ + h)2

p(x|θ)
dxdθ − 1

)
E0(θ̂ − θ)2 ≥ h2

≈⇔
(∫

π(θ + h)2

π(θ)

(
1 + h2I(θ)

)
dxdθ − 1

)
E0(θ̂ − θ)2 ≥ h2
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≈⇔
(∫

π(θ + h)2

π(θ)
dxdθ − 1 + h2

∫
I(θ)π(θ)dθ

)
E0(θ̂ − θ)2 ≥ h2

⇔
(
1 + h2I(π)− 1 + h2

∫
I(θ)π(θ)dθ

)
E0(θ̂ − θ)2 ≥ h2

⇔
(
h2I(π) + h2

∫
I(θ)π(θ)dθ

)
E0(θ̂ − θ)2 ≥ h2.

van Trees inequality has been shown to be related to the famous Local Asymptotic Minimax
(LAM) theorem by David Pollard and colleagues [? ], which we will discuss briefly at the end of
this chapter.

3 M-estimation theory

M/Z-estimation is an enormously general estimation framework. Any estimation procedure that is
itself solving an optimization problem is M -estimation:

θ̂ = argmax
θ
M(X1, · · · , Xn; θ)

for some objective functionM. IfM is differentiable and the Hessian is negative semidefinite, then
the optimization problem reduces to an estimating equation, which is Z-estimation.

When M is the data (pseudo/profile/partial/...) log-likelihood, θ̂ is the (pseudo/profile/par-
tial/...) MLE; when −M is the empirical risk (very common in machine learning), θ̂ is the empirical
risk minimization (ERM) estimator; when −M is empirical risk plus some regularization terms,
then θ̂ is the penalized ERM estimator... In the most general form, M can be strongly convex,
convex, non-convex, smooth, or even non-smooth, and does not have to be the form of sum of i.i.d.

Now let us focus on the following type of M-estimation, which includes MLE as a special case.
Denote m(O, θ) a function of some random vector O ∈ Rd that depends on unknown parameter θ,
M(θ) := P[m(O, θ)] its population expectation, and Mn(θ) := Pn[m(O, θ)]. Here we introduce in
this lecture the following two operators: P[·] the population expectation operator with respect to
the true law, and Pn[·] the empirical expectation operator.

Definition 4 (Empirical objective function maximization). The true parameter θ0 is the solution
to the following population maximization problem:

θ0 = argmax
θ∈Θ

M(θ). (7)

Then the corresponding M-estimator θ̂n is the solution to the following empirical maximization
problem:

θ̂n = argmax
θ∈Θ

Mn(θ). (8)

In this lecture, we consider mostly the case that Θ = Rd. When this is not the case, we are
dealing with constrained M-estimation, which under certain regularity conditions is equivalent to
penalized M-estimation by duality.

We consider three different layers of statistical properties of θ̂n:
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1. When θ̂n is a consistent estimator of θ0?

2. What is the speed at which θ̂n converges to θ0 in ∥ · ∥-norm, as n increases?

3. Is normal a good approximation to the distribution of θ̂n as n grows?

3.1 Consistency of θ̂n

Formally, we are trying to show ∥θ̂n − θ0∥ → 0 in Pθ0-probability. Usually, the intuition goes as
follows under the “well-posedness premise”

there is no “spurious optima” θ′, which is a point different from θ0 but M(θ0) ≈M(θ′)
for the population optimization program (7), i.e. M(θ0) > supθ:∥θ0−θ′∥>δM(θ′)

∥θ̂n − θ0∥ > δ =⇒ M(θ0)−M(θ̂n) > M(θ0)− sup
θ:∥θ0−θ′∥>δ

M(θ′). (9)

Then by the “zeroth-order” condition of the empirical optimization program (8)

Mn(θ̂n) ≥Mn(θ0), (10)

combined with the well-posedness of the problem in (9), we have

[M(θ0)−M(θ̂n)] + [Mn(θ̂n)−Mn(θ0)] > M(θ0)− sup
θ:∥θ0−θ′∥>δ

M(θ′)

⇔ [M −Mn](θ0)− [M −Mn](θ̂n) > M(θ0)− sup
θ:∥θ0−θ′∥>δ

M(θ′)

⇔ [M −Mn](θ0 − θ̂n) > M(θ0)− sup
θ:∥θ0−θ′∥>δ

M(θ′)

⇐ oPθ
(1) + sup

θ∈Θ
[M −Mn](θ) > M(θ0)− sup

θ:∥θ0−θ′∥>δ
M(θ′).

(11)

Thus we ask under what condition of M , we have

2 sup
θ∈Θ

[M −Mn](θ) > M(θ0)− sup
θ:∥θ0−θ′∥>δ

M(θ′)

with negligible probability.
Now we observe the LHS of the above display is

sup
θ∈Θ

[M −Mn](θ) (12)

which is a stochastic process indexed by θ, and the randomness of this stochastic process is a result
of the empirical measure in Mn = 1

n

∑n
i=1m(Oi, θ). As a consequence, we call (12) the “empirical

process” term, which was the central object of study between 1970’s and 1990’s for probabilists. To
my best knowledge, this field was started by Richard Dudley (MIT, passed in 2020), then followed
by Evarist Giné (University of Connecticut, passed in 2015), Michel Talagrand1, Jon A Wellner,
Roman Vershynin, Vladimir Koltchinskii, Aad van der Vaart, and younger generations like Richard
Nickl and Ramon van Handel. Now the focus of probability has shifted to statistical physics and
their connection to computational complexity theory.

1For students who are ambitious enough to become probabilists, you should learn more about Michel Talagrand,
who has not only made seminal contributions to empirical processes and hence learning theory, but also to the
intersection between statistical physics and computational complexity regarding Parisi formula, Ising models and
spin glass theory.
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3.2 Glivenko-Cantelli (GC) class

An underlying philosophy of empirical process theory is to find the correct complexity measure of
F that suffices to guarantee certain desired properties to happen.

There are in general two types of complexity measures of a function class/a parameter space
F :

(1) Metric entropy [? ] based on covering number or bracketing number;

(2) Combinatorial dimension [? ] (simplest example: Vapnik-Chervonenkis dimension [? ]).

In fact, as we will show later, combinatorial dimension is often used to calculate metric entropy.
We start with the following now-standard symmetrization trick. First create independent copies

Y1, · · · , Yn of X1, · · · , Xn and independent Rademacher random signs ε1, · · · , εn ∼ Rad(1/2). Then

∥Pn − P∥F = sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣
= sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− EY [f(Yi)

∣∣∣∣∣
≤ EY sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− f(Yi)

∣∣∣∣∣
≤ EεEY sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

εi{f(Xi)− f(Yi)}

∣∣∣∣∣
EX∥Pn − P∥F ≤ 2EXEε sup

f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣∣︸ ︷︷ ︸
=:Radn(F)

by Triangle inequality

where Radn(F) is called the Rademacher complexity of F . Conditioning on the data X1, · · · , Xn,
Radn(F) can be viewed as an empirical process of the random signs. Because f and random signs
are bounded, we have a bounded empirical process, and hence a sub-Gaussian process.

Now let’s think about what if F is actually a finite set with cardinality |F|? Under this simplified
setting, we can apply the following important Maximal Inequality theorem:

Theorem 5 (Maximal Inequality for sub-Gaussian random variables). Suppose Yi
ind∼ sub-Gaussian(0, σ2i )

for i = 1, · · · ,m, i.e. EeλYi ≤ eλ2σ2
i /2, for i = 1, · · · ,m and λ > 0. If σ1, · · · , σm ≤ σ, then

E max
1≤i≤m

Yi ≤ σ (2 logm)1/2 ,

E max
1≤i≤m

|Yi| ≲ σ (log 2m)1/2
(13)

Proof.

eλEmax1≤i≤m Yi ≤ Eeλmax1≤i≤m Yi by Jensen

≤
m∑
i=1

EeλYi ≤ me
λ2σ2

2
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⇒ E max
1≤i≤m

Yi ≤
logm

λ
+
λσ2

2
.

Then find out the minimizer over λ should be λ2 = 2 logm/σ2.
For the second maximal inequality, we have two proofs (one is a very clever proof, thanks to Ke-

jie!). Augment the original sequence Y1, · · · , Ym to Y1, · · · , Ym,−Y1, · · · ,−Ym. Then Emax1≤i≤m |Yi| =
Emax1≤i≤mmax{±Yi}, followed by the first inequality. The second approach is more brute-force:

E max
1≤i≤m

|Yi| =
∫ ∞

0
P
(

max
1≤i≤m

|Yi| > t

)
dt

=

∫ t0

0
P
(

max
1≤i≤m

|Yi| > t

)
dt+

∫ ∞

t0

P
(

max
1≤i≤m

|Yi| > t

)
dt

≤ t0 + 2m

∫ ∞

t0

t

t0
e−

t2

2σ2 dt.

Then optimize over t0.

The upper bound given in the first (13) is actually tight for Gaussians. I forgot to emphasize
this in the class but this is quite important to remember: maxima of m sub-Gaussian random
variables (each of which are OP (1)) actually have order

√
logm.

With Maximal Inequality, one can easily find a bound on Radn(F) after computing the sub-
Gaussian index σf for every f ∈ F . But now the question is what if F is an infinite set?

3.2.1 Metric entropy

The solution is quite simple and natural: Just find some finite set to approximate F ! The more
finite elements we need, the more complex F is. In the field of geometric functional analysis (GFA),
many people have worked on this problem and reached the consensus that a complexity measure
called metric entropy is a very good way to quantify the complexity of F . To define metric entropy,
we need the following concepts.

Definition 6 (ϵ-cover and covering number). Given a metric d, a set {θ1, · · · , θN : θi ∈ Θ, i =
1, · · · , N} is an ϵ-cover of Θ if for every θ ∈ Θ, there exists i ∈ {1, · · · , N} such that d(θ, θi) ≤ ϵ.
The ϵ-covering number of Θ is defined as:

N(ϵ,Θ, d) = inf{n ∈ N : ∃ an ϵ-cover {θ1, · · · , θn} of Θ}. (14)

A closely related concept is the packing number

Definition 7 (ϵ-packing and packing number). Given a metric d, a set {θ1, · · · , θD : θi ∈ Θ, i =
1, · · · , D} is an ϵ-packing of Θ if for every i ̸= j, i, j ∈ {1, · · · , D}, d(θi, θj) ≥ ϵ. The ϵ-packing
number of Θ is defined as:

D(ϵ,Θ, d) = sup{d ∈ N : ∃ an ϵ-packing {θ1, · · · , θd} of Θ}. (15)

Remark 8. Given Θ, its ϵ-covering and ϵ-packing are allowed to contain members which do not
belong to Θ. We will see such an example in Example 2.

In fact, they are equivalent in terms of ϵ up to a constant:
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Lemma 9. For every ϵ > 0,

D(2ϵ,Θ, d) ≤ N(ϵ,Θ, d) ≤ D(ϵ,Θ, d).

Proof. The first inequality: Find a maximal 2ϵ-packing {θ1, · · · , θD} and ϵ-covering {θ′1, · · · , θ′N}.
Suppose on the contrary to the statement, D ≥ N +1. Then there must exist i, j ∈ {1, · · · , D} and
k ∈ {1, · · · , N} such that θi, θj ∈ B(θk, ϵ) by definition of an ϵ-covering of Θ. Thus d(θi, θj) ≤ 2ϵ
which contradicts the premise that {θ1, · · · , θD} is a 2ϵ-packing.

The second inequality: Find a maximal ϵ-packing {θ1, · · · , θD}. Then for any θ ∈ Θ, there must
exist j ∈ {1, · · · , D} such that d(θ, θj) ≤ ϵ because otherwise {θ, θ1, · · · , θD} is also an ϵ-packing
which contradicts the maximality of {θ1, · · · , θD}. Thus {θ1, · · · , θD} is also an ϵ-covering, which
implies N(ϵ,Θ, d) ≤ D(ϵ,Θ, d).

Definition 10 (Metric entropy). Metric entropy of Θ under metric d is simply logN(ϵ,Θ, d) or
logD(ϵ,Θ, d).

Example 1. For a bounded subset Θ ⊆ Rd, for every ϵ ∈ (0, 1)(
1

ϵ

)d

≲ N(ϵ,Θ, ∥ · ∥) ≲
(
1

ϵ

)d

. (16)

Proof. The proof strategy is a classic “volume argument”.
The first inequality: Find a maximal 2ϵ-packing {θ1, · · · , θD}. Then

D⋃
i=1

B(θi, 2ϵ) ⊇ Θ

where B(θ, r) is a ball centered around θ with radius r. This is because {θ1, · · · , θD} is a 2ϵ-covering
of Θ. Thus

Dvol[B(θi, 2ϵ)] ≥ vol[Θ]⇒ D ≥ vol[Θ]

vol[B(θi, 2ϵ)]
≳

(
1

ϵ

)d

.

The second inequality: Find a maximal ϵ-packing {θ1, · · · , θD}. Then

D⋃
i=1

B(θi, ϵ/2) ⊆ Θ̃ := {θ ∈ Rd : ∥θ −Θ∥ ≤ ϵ/2}.

Thus

Dvol[B(θi, ϵ/2)] ≤ vol[Θ̃]⇒ D ≤ vol[Θ̃]

vol[B(θi, ϵ/2)]
≲

(
1

ϵ

)d

.

The above result makes intuitive sense: it reflects the curse-of-dimensionality (CoD). The com-
plexity quantified by covering number grows exponentially with dimension d. But can we find a
smaller “d” to be placed in the exponent? This will be partially answered in next section.
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Example 2 (1-Lipschitz functions). Consider F = {f : [0, 1]→ [0, 1]; f is 1-Lipschitz}. Then

logN(ϵ,F , ∥∥∞) ≲
1

ϵ
.

Proof. Divide [0, 1] into ϵ-grids. So there are N = 1/ϵ of them (I am not careful about whether
the number of grids is integer or not). Denote the end points of these grids as a0 = 0, aN = 1 and
ak = kϵ. Define the following approximation of f as

f̃(x) =
N∑
k=1

ϵ⌊f(ak)
ϵ
⌋1{x ∈ (ak−1, ak]}.

You can easily check ∥f̃ − f∥∞ < ϵ. Now we need to count how many f̃ are there? In the first
grid [a0, a1] there are 1/ϵ difference choices: 0, ϵ, 2ϵ, · · · , 1. However after the first grid, we have to
consider an important property of f̃ : it is a good approximation of Lipschitz functions. So let’s
look at how much freedom do we have at grid k after fixing f̃(ak−1): By Triangle inequality and
Lipschitz-ness of f

|f̃(ak)− f̃(ak−1)| ≤ |f̃(ak)− f(ak)|+ |f̃(ak−1)− f(ak−1)|+ |f(ak)− f(ak−1)| ≤ 3ϵ.

So f̃(ak) can take at most 7 different values. Thus the total number of f̃ we can have is upper
bounded by

1

ϵ
71/ϵ−1.

Thus

logN(ϵ,F , ∥ · ∥∞) ≲
1

ϵ
.

3.2.2 Definition of Glivenko-Cantelli class and a sufficient condition

Glivenko-Cantelli class is the class such that uniform law of large numbers hold. In [? ], Jon Wellner
and Aad van der Vaart define GC class in the sense of strong law of large numbers, which could
be quite technical. You can look at their Chapter 2 if interested. To avoid extraneous technicality,
we only consider uniform WLLN.

Definition 11 (Glivenko-Cantelli (GC) class). A class F of measurable functions f : X → R with
P|f | <∞ ∀f ∈ F is said to belong to the strong or weak Glivenko-Cantelli (GC) class if

sup
f∈F

[Pn − P](f)→ 0 a.s. or in P-probability

What conditions are sufficient for F to be a GC class?
Recall that we have reached the step to control EXEεRadn(F) the expected Rademacher com-

plexity of F . Now we are going to study how to control EXEεRadn(F) via maximal inequality in
Theorem 5 and metric entropy. First, find a minimal ϵ-covering Gϵ of F . Then conditioning on the
data X1, · · · , Xn

2,

EεRadn(F) = Eε sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

εif(Xi)

∣∣∣∣∣ ≤ Eεmax
g∈Gϵ

∣∣∣∣∣ 1n
n∑

i=1

εig(Xi)

∣∣∣∣∣+ ϵ.

2Here you can compare the calculation below to what we have for Dudley’s entropy integral bound in Theorem
37.
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Here we are choosing norm ∥f − g∥ = 1
n

∑n
i=1 |f(Xi)− g(Xi)|.

ϵ can be made arbitrarily small. For f bounded so g is also bounded between [−B,B], it is not
hard to see that

1

n

n∑
i=1

εig(Xi) ∼ sub-Gaussian(0, σ2g)

where σ2g = 1
n2

∑n
i=1 g(Xi)

2 ≲ 1
n . Thus

Eεmax
g∈Gϵ

∣∣∣∣∣ 1n
n∑

i=1

εig(Xi)

∣∣∣∣∣ ≲
√

log |Gϵ|
n

=

√
logN(ϵ,F , ∥ · ∥)

n
.

Thus as long as logN(ϵ,F ,∥·∥)
n → 0, F is GC.

3.2.3 Calculating metric entropy using combinatoric dimensions

The most common combinatoric dimension of a set is via the so-called shattering number, based
on which VC dimension of a set can also be defined. Shattering number is initially defined only for
indicator/binary/Boolean functions.

Definition 12 (Shattering number of set of indicator functions F). Define Fn = {x1, · · · , xn} and
∆(F , Fn) := {{f(x1), · · · , f(xn)} : f ∈ F}. Some people call this VC-index or projection of Fn

onto F . Shattering number is the maximal cardinality of VC index over all possible Fn:

s(F , n) := sup
Fn

∆(F , Fn).

Given Fn, F is said to shatter Fn if |∆(F , Fn)| = 2n. Then we can define VC dimension as

VC(F) = sup{n ∈ N : s(F , n) = 2n}

i.e. the largest sample size such that we can find data Fn shattered by F .

Example 3. The class of indicator functions F = {1{x ≤ c}, c ∈ R}. We have VC(F) = 1 because
a set F2 = {x0, x1} without loss of generality x0 < x1 cannot be shattered by F . We can only use
F to pick out the subset {(0, 0), (0, 1), (1, 1)} which excludes {1, 0}. But F shatters F1 = {x0}.

Now let us look at a more complicated example: half spaces H2 in R2. This will be the
motivating example for us to use shattering number to control the metric entropy of H2. We
will also introduce a very useful but difficult-to-master technique called “probabilistic methods for
combinatorics” [? ]. We will only encounter a simple application of this technique.

Example 4. We will first ask what is the upper bound of s(H2, n)? Look at Figure 1 below. Here
F = {x0, x1, x2, x3} so n = 4.
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Figure 1: picture for understanding s(H2, 4)

We can anchor at x0 first, and draw lines x0-x1, x0-x2, x0-x3, and then divide each orthant into
two pieces by adding the red lines. Then there are 2× (4− 1) positive half spaces (above each line)
and 2× (4−1) negative half spaces (below each line). The positive and negative half spaces for each
line can pick out at most two subsets from F = {x0, x1, x2, x3} so this gives 2× 2× (4− 1).

Think about why this is the largest possible subsets of F that can be picked out by the halfspaces
in H2 going through x0? Does cutting all the orthants one more time increase the number of
subsets picked out by H2?

Now generalize the above experiment from n = 4 to general n, giving us the upper bound
2× 2× (n− 1) = 4(n− 1). But we have n total anchor points to start with so the most conservative
upper bound is

n4(n− 1) + 1 ≤ 4n2

where 1 handles the possibility of {0, 0, 0, 0}. So the shattering number grows quadratically in n
at least when n large, far smaller than 2n the total number of subsets of F for general n. When
VC(H2) ≥ n though, we still have s(H2, n) = 2n. But when VC(H2) < n, a set of n data can-
not be shattered any more and the shattering number grows as n2. We will rigorously prove this
phenomenon for more general cases (Sauer’s lemma).

Now we will show how to derive an upper bound of the metric entropy via its shattering number
upper bound n2 via the probabilistic method for combinatorics. We first choose D half spaces
{H1, · · · , HD} which is a maximal ϵ-packing of H2. We need an upper bound on D. Because half
spaces are sets, we simply choose the following metric:

∥Hi −Hj∥ = P (Hi∆Hj)
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for any probability measure P on R2. So P (Hi∆Hj) ≥ ϵ for any two members of the ϵ-packing. Now
how to upper bound D? H2 can only pick out at most 4n2 subsets of any Fn with n data points.
Let’s ansatz all the halfspaces in the ϵ-packing pick out different subsets of Fn = {x1, · · · , xn}. So
D ≤ 4n2. But how large n can be such that the clause

“all the halfspaces in the ϵ-packing pick out different subsets of Fn = {x1, · · · , xn}”
is satisfiable?

That is, we need to show existence of Fn such that the above requirement is met. Here comes the
probabilistic method. Showing existence suffices to show the probability of the above requirement
is positive. Here the probability measure is chosen such that each xk is sampled independently for
k = 1, · · · , n:

P (all the halfspaces in the ϵ-packing pick out different subsets of Fn = {x1, · · · , xn})
= 1− P (there exist two halfspaces in the ϵ-packing pick out the same subset from Fn = {x1, · · · , xn})
= 1− P (∪1≤i<j≤DHi, Hj in the ϵ-packing pick out the same subset from Fn = {x1, · · · , xn})

≥ 1−
(
D

2

)
P (Hi, Hj in the ϵ-packing pick out the same subset from Fn = {x1, · · · , xn}) (union bound)

= 1−
(
D

2

)
P (no xk ∈ Hi∆Hj, for k = 1, · · · , n)

= 1−
(
D

2

)
(1− P (Hi∆Hj))

n

≥ 1−
(
D

2

)
(1− ϵ)n

≥ 1−D2e−nϵ > 0

⇒ enϵ > D2 ⇒ n >
2 logD

ϵ
.

That is, if we pick n = 2 logD
ϵ , then it is possible to satisfy D ≤ 4n2 = (4 logD)2

ϵ2
i.e. D

log2 D
≤
(
4
ϵ

)2
,

which further implies

D ≲

{
1

ϵ
log

(
1

ϵ

)}2

.

So with s(H2, n) ≲ n2, we can show D(ϵ,H2, ∥·∥) ≲
{
1
ϵ log

(
1
ϵ

)}2
. We will also see the more general

case.
Finally, one can also ask the following question: what is the VC dimension of H2? In fact,

VC(H2) = 3. It has a much more general extension:

Lemma 13. For the space of all d-dimensional half spaces Hd in Rd, we have

VC(Hd) = d+ 1.

Proof. The proof is based on the following cute observation:

Fact 1. Fn = {x1, · · · , xn} is shattered by half spaces {1{β0 + β⊤1 · ≥ 0}, β0 ∈ R, β1 ∈ Rd} ⇔ the
columns of the design matrix

X =

(
1 1 · · · 1
x1 x2 · · · xn

)
(d+1)×n
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are linearly independent.

The intuition of the above fact is plain and simple: Since we want F shatters Fn, we need for
every subset σ of {0, 1}n, the following system of linear equations is solvable: a+ b⊤x1

...
a+ b⊤xn

 =

 σ1
...
σn

 ,

which essentially says any σ ∈ {0, 1}n must lie in the column space of X, which is guaranteed if
d+ 1 ≥ n.

Shattering number growing polynomially with n is a very general phenomenon, when the VC
dimension is bounded. This is the famous Sauer’s lemma.

Sauer’s lemma has been proved by many different mathematicians. Sauer himself credited this
problem to Paul Erdös.

Theorem 14 (Sauer’s lemma). Denote d as the VC dimension of F . Then

s(F , n) ≤
d∑

i=1

(
n

i

)
≤
(ne
d

)d
.

Proof. In most books, Sauer’s lemma is proved by induction, which is not very interesting. I give
a more constructive proof, originated from “extremal combinatorics”.

To start with, let us ponder the RHS of Sauer’s lemma and see what it actually entails. It is
actually the cardinality of a class of subsets ∆′, in which every subset member has size at most d,
and every subset’s subset is also in ∆′. So we ask, for VC index ∆ ≡ ∆(F , Gn), can we find ∆′

such that the following hold

1. |∆′| = |∆|;

2. If A ∈ ∆′, then every subset of A is also in ∆′;

3. The cardinality of any member A ∈ ∆′ must be upper bounded by d.

Note that every member A of ∆ or ∆′ is a vector in {0, 1}n, but for every A, it also corresponds
to a subset in Gn (e.g. A = (1, 1, 0, · · · , 0) then there is a A = {x0, x1} ⊂ Gn). Because of
this correspondence, we slightly abuse notation by exchangeably calling the {0, 1}n vector and the
corresponding subset in Gn both as A.

So the only task left is to construct such a ∆′ and the following algorithm can do so:

• For i = 1, · · · , n:

– For A ∈ ∆:

∗ If A \ {xi} ̸∈ ∆:
A← A \ {xi}.

1-13



Based on the definition of this algorithm, it is obvious the requirement 1 and 2 are met because:
(1) The algorithm never completely removes any member in ∆; (2) The algorithm replaces A by a
smaller subset of A is that smaller subset is not in ∆.

We are left to show that the cardinality of any member of ∆′ must be upper bounded by d.
Note that since for any A ∈ ∆′, any subset of A is also in ∆′, there must exist Boolean function
class F ′ such that ∆′ = ∆(F ′, Gn) and F ′ shatters any A ∈ ∆′. (Argue why this is true in your
homework). If we need to show |A| ≤ d for A ∈ ∆′, it suffices to show A is also shattered by F
because VC(F) = d. So we are left to show:

For any A shattered by F ′, A is shattered by F .

For 3, consider we are at iteration i ∈ [n]3. With abuse of notation, before the “if” statement,
the set is denoted as ∆; after “if”, the set is denoted as ∆′.

A subset A ⊆ Gn is shattered by F ′ implies that for any subset A′ ⊆ A, we can always find
B′ ∈ ∆′ such that B′ ∩A = A′ (argue this in homework).

Then we need to show A is also shattered by F , or equivalently there exists B ∈ ∆ such that
B ∩A = A′ (same argument).

Say xi ∈ A ⊂ ∆′ otherwise A will not be affected by the “if” clause during this iteration. Then
divide your discussion into two parts:

(1) xi ∈ A′, A′ ⊂ A, here you can show that for B′ ∈ ∆′ with B′ ∩ A = A′, we can equate
B = B′ and B ∈ ∆ (argue why this is true based on the algorithm in your homework), so F
shatters A;

(2) xi ̸∈ A′, A′ ⊂ A, here you can show that there always exist B′′ ∈ ∆′ such that B′′ ∩
A = A′ ∪ {xi} (argue why this is true based on the algorithm in your homework). This implies
B′′ \{xi} ∈ ∆ (argue why this is true based on the algorithm in your homework) and thus we again
find B = B′′ \ {xi} such that B ∩A = A′.

Remark 15 (Extremal combinatorics). Extremal combinatorics is a field about computing some
min/max statistics in combinatorics and graph theory. The following are some typical examples of
extremal problems:

• Minimum size of the largest independence set of a (triangle-free) graph G: See a recent
breakthrough [? ] by a group of undergraduate students from MIT;

• Ramsey theory: For a complete graph with edges colored with red or blue, how many vertices
the graph must have to ensure the existence of a blue or red clique? Ramsey theory is
also related to hardness results in Theoretical Computer Science. For example, people have
conjectured that constructing a three-colored graph with d vertices with clique sizes bounded
by log2 d is computationally hard. It has been shown [? ] that if this problem were not hard,
then it would have been possible to explicitly construct a matrix satisfying the Restricted
Isometry Property for n = log2 d and the sparsity s =

√
d, an important condition to ensure

exact recovery in sparse high-dimensional linear regression.

• Sunflower conjecture (due to Erdös and Rado): How large a family of k-sets has to be such
that there exists a subfamily {A1, · · · , Ar} of size r, of which the intersection between any
two k-sets is the same, i.e. Ai ∩ Aj is independent of i, j? Erdös and Rado conjectured this

3In most papers, [n] denotes {1, · · · , n} for convenience.
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number should be ck for some large constant C > 0. In 2019, [? ] improved the lower bound
to (log k)k from kk.

• Sensitivity conjecture: Every 2n−1+1-vertex subgraph of n-dimensional Boolean hypercubes
(vertices adjacent iff they differ in only one coordinate) has maximum degree ≥

√
n; See Hao

Huang’s amazing two-page proof [? ] of this decades-long open problem;

• Kadison-Singer conjecture: See Daniel Spielman and colleagues’ proof [? ? ? ? ] using
spectral graph theory (eigenvalue properties of the graph Laplacian).

Apart from algebraic geometry, this is a field that witnesses a lot of new breakthroughs in recent
years. It is also deeply connected with statistics and theoretical computer science. For good
resources, you can check out Jacob Fox and Yufei Zhao’s webpages.

Sauer’s lemma has very important implication: It essentially says any set with finite VC di-
mension is “learnable” in the sense that its Rademacher complexity is o(1). It follows from the
theorem below.

Theorem 16. For any set F with bounded VC dimension d, we have

D(ϵ,F , || · ||) ≲
(
1

ϵ
log

1

ϵ

)d

. (17)

Proof. The proof is essentially the same as the proof for H2. Pick an ϵ-packing {f1, · · · , fD} with
the same metric P(fi∆fj) ≥ ϵ. Similarly, we can find Gn with n ≍ logD

ϵ . By Sauer’s lemma, we
immediately have

D ≲
(n
d

)d
≲

(
logD

ϵd

)d

⇒ D1/d ≲
logD

ϵd
= logD1/d 1

ϵ

⇒ D1/d

logD1/d
≲

1

ϵ
⇒ D ≲

(
1

ϵ
log

1

ϵ

)d

.

Example 5. The most classical example from the Glivenko-Cantelli class is the indicator functions.
In fact, because indicator functions are so simple, they also belong to Donsker class, which we will
cover shortly after. In this example, we will actually derive a non-asymptotic high probability bound
version of the uniform law of large numbers. You will get a chance to learn another very useful
exponential tail inequality (McDiarmid inequality) based on Hoeffding inequality.

Theorem 17. F := {1{· ≤ c}, c ∈ R}. Then we have

P

(
sup
f∈F

[Pn − P]f ≤ 2ERadn(F) +
√

2

n
log

2

δ

)
≥ 1− δ. (18)

Proof. The proof can be divided into the following steps. The strategy is very common in writing
papers.
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• Denote g(X1, · · · , Xn) := supf∈F |[Pn−P]f | and decompose g = (g−Eg)+Eg. We first look
at how well Zn concentrates around its expectation EZn, i.e. bounding

P (|Zn − EZn| > t) ≤ ?

Here because f is Boolean, supf∈F |[Pn − P]f | = supf∈F

∣∣∣∣ 1n n∑
i=1

(f(Xi)− Ef(X))

∣∣∣∣ satisfies a

special property called “bounded difference”: i.e. for any j = 1, · · · , n, we draw independent
copies X ′

i of Xi and compare

∆ig =

∣∣∣∣∣∣supf∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− Ef(X)

∣∣∣∣∣− sup
f∈F

∣∣∣∣∣∣
 1

n

n∑
i ̸=j

(f(Xi)− Ef(X)) +
1

n
(f(X ′

j)− Ef(X))

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

n
.

Then we can apply the McDiarmid inequality (bounded difference inequality)

Lemma 18 (McDiarmid inequality). For any function g(x1, · · · , xn) satisfying |∆ig| ≤ ci we
have

P(|g − Eg| ≥ t) ≤ 2 exp

{
− 2t2∑n

i=1 c
2
i

}
(19)

Proof. We can decompose g − Eg into sum of martingale differences:

g − Eg =
n∑

i=1

Zi

where Zi = E[g|X1, · · · , Xi] − E[g|X1, · · · , Xi−1] so E[Zi] = 0. It is also straightforward to
check that li ≤ Zi ≤ ui for some lower and upper bounds li, ui such that ui − li ≤ ci.
Now

P (g − Eg > t) = P

(
n∑

i=1

Zi > t

)
= P

(
eλ

∑n
i=1 Zi > eλt

)
≤ e−λtE

[
n∏

i=1

eλZi

]

≤ e−λtE

[
n−1∏
i=1

eλZiE
[
eλZn |X1, · · · , Xn−1

]]

by Hoeffding inequality ≤ e−λtE

[
n−1∏
i=1

eλZie
λ2c2n

8

]
≤ · · ·

≤ e−λte
λ2

8

∑n
i=1 c

2
i .

Then as before, we minimize the upper bound over λ.
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Applying (19) with ci replaced by 1/n, we immediately have

P (|g − Eg| ≥ t) ≤ 2e−2nt2 .

Eventually, by setting δ = 2e−2nt2 , we have t =
√

2
n log 2

δ , so

P

(
g − Eg ≤

√
2

n
log

2

δ

)
≥ P

(
|g − Eg| ≤

√
2

n
log

2

δ

)
≥ 1− δ

and Eg ≤ 2ERadn(F).

3.2.4 VC dimension and shattering number for non-Boolean functions?

There are now several strategies to extend the definition of shattering number and VC dimension
to non-Boolean functions. The most commonly used two definitions are VC-subgraph dimension
and γ-fat-shattering. [? ? ] (one published in Annals of Mathematics and the other published in
Inventiones mathematicae, top-2 pure math journals) establish how γ-fat shattering is connected
to metric entropy in ∥ · ∥∞-norm when F is bounded and absolutely integrable.

3.3 Bracketing number and bracketing entropy

Before we discuss rate of convergence of M-estimators, we need to introduce another type of com-
plexity measure: bracketing numbers and bracketing entropy. These will be used frequently in later
lectures.

Fix (F , || · ||) a normed function space. F = {f : X→ R}.

Definition 19. An ϵ-bracket of F is defined as{
[ℓi(·), ui(·)], i = 1, · · · , N :

for every f ∈ F , x ∈ X, there exists i such that ℓi(x) ≤ f(x) ≤ ui(x) and ∥ℓ− u∥ ≤ ϵ

}
.

(20)
Then ϵ-bracketing number is

N[ ](ϵ,F , || · ||) = inf{n ∈ N : there exists an ϵ-bracket {[ℓi, ui], i = 1, · · · , n} of F}. (21)

The bracketing entropy is simply logN[ ](ϵ,F , || · ||).

We have the following relation between N[ ](ϵ,F , || · ||) and N(ϵ,F , || · ||):

Lemma 20.
N(ϵ,F , || · ||) ≤ N[ ](2ϵ,F , || · ||).

Proof. It is obvious because 2ϵ-bracket of F is an ϵ-cover of F .

The converse is not true. But it is true in certain sense if we consider a smaller class of F that
is related to M-estimation.

Consider F = {mθ : θ ∈ Θ} with (Θ, d) a metric space, satisfying the following Lipschitz-like
restriction: for any x ∈ X, for some envelope function F of F .

|mθ1(x)−mθ2(x)| ≤ d(θ1, θ2)F (x).
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Definition 21 (Envelope). An envelope F of F satisfies:

∀ f ∈ F ,∀ x ∈ X, |f(x)| ≤ F (x).

The minimal envelope F ∗(x) = supf∈F |f(x)|.
Then we have

Lemma 22. For F = {mθ : θ ∈ Θ} with (Θ, d) a metric space, satisfying the following Lipschitz-
like restriction: for any x ∈ X, for some envelope function F of F .

|mθ1(x)−mθ2(x)| ≤ d(θ1, θ2)F (x).

We have

N[ ](2ϵ||F ||,F , || · ||) ≤ N(ϵ,Θ, d).

Later in this course, we will constantly use the following quantity:

Definition 23 (Dudley’s entropy integral).

J[ ](δ,F , || · ||) :=
∫ δ

0

√
logN[ ](ϵ,F , || · ||)dϵ

3.4 Rates of convergence and asymptotic distributions of M-estimators; Donsker
class; chaining and generic chaining

Consistency is usually only a first step in deriving statistical properties. In most problems, people
are not satisfied with consistency. More refined characterization of an M-estimator θ̂n includes its
convergence rate to the estimand θ0 and the asymptotic distribution of θ̂n.

We first sketch the intuition on how to derive the limiting distribution of a Z-estimator from
the estimating equation perspective

Ψ̂n(θ̂n) :=
1

n

n∑
i=1

ψ
(
Xi; θ̂n

)
= 0, where the target estimand θ0

is the solution to the population expectation Ψ(θ) := E [ψ (X; θ0)] = 0.

(22)

Roadmap for analyzing Z-estimators (22). We actually relax the estimating equation condition to
the following:

√
nΨ̂n(θ̂n) = oP(1) and

√
nΨ(θ0) = 0.

If the estimating equations are very nonlinear, so no analytical solution is available and numerical
methods need to be used, this relaxation can incorporate the case where the iterative algorithms
may stop at finite number of iterations.

Then we immediately have the following:

oP(1) =
√
nΨ̂n(θ̂n)−

√
nΨ(θ0)

centering: =
√
n
(
Ψ̂n(θ̂n)−Ψ(θ̂n)

)
−
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
+
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
+
√
n
(
Ψ(θ̂n)−Ψ(θ0)

)
.
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Note that
√
n
(
Ψ̂n(θ̂n)−Ψ(θ̂n)

)
−
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
is an empirical process term, which

we assume to be small: √
n(Pn − P)[ψ(θ̂n)− ψ(θ0)] = oP(1). (23)

Then we need to assume that we can perform “functional Taylor expansion” of Ψ(θ) around
Ψ(θ0): in particular, let us assume the following Fréchet differentiability assumption at the truth
θ0

∥Ψ(θ)−Ψ(θ0)− Ψ̇(θ0)(θ − θ0)∥ = o (∥θ − θ0∥) . (24)

oP(1) = oP(1) +
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
+
√
n
(
Ψ(θ̂n)−Ψ(θ0)

)
⇒
√
n
(
Ψ(θ̂n)−Ψ(θ0)

)
= −
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
+ oP(1)

⇒
√
nΨ̇(θ0)(θ̂n − θ0) +

√
noP

(
∥θ̂n − θ0∥

)
= −
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
+ oP(1).

Now we assume Ψ̇(θ0) has bounded spectrum. Then

√
nΨ̇(θ0)(θ̂n − θ0) +

√
noP

(
∥θ̂n − θ0∥

)
= −
√
n
(
Ψ̂n(θ0)−Ψ(θ0)

)
+ oP(1)

⇒
√
n∥θ̂n − θ0∥ =

√
n∥Ψ̇(θ0)

−1Ψ̇(θ0)(θ̂n − θ0)∥

≤ ∥Ψ̇(θ0)∥−1∥
√
nΨ̇(θ0)(θ̂n − θ0)∥

= ∥Ψ̇(θ0)∥−1
∥∥∥√noP (∥θ̂n − θ0∥)+√n(Ψ̂n(θ0)−Ψ(θ0)

)
+ oP(1)

∥∥∥
⇒
√
n∥θ̂n − θ0∥ ≲ oP

(√
n∥θ̂n − θ0∥

)
+OP(1)

⇒ ∥θ̂n − θ0∥ = OP(n
−1/2).

With this rate of convergence, we immediately have

√
nΨ̇(θ0)(θ̂n − θ0) + oP(1) = −

√
n(Pn − P)ψ(θ0) + oP(1)

⇒
√
nΨ̇(θ0)(θ̂n − θ0) = −

√
n(Pn − P)ψ(θ0) + oP(1) = −

1√
n

n∑
i=1

ψ(Xi; θ0) + oP(1)⇝ N(0,Pψ(θ0)ψ(θ0)⊤)

⇒
√
n(θ̂n − θ0) = −

1√
n

n∑
i=1

Ψ̇(θ0)
−1ψ(Xi; θ0) + oP(1)⇝ N(0, Ψ̇(θ0)

−1Pψ(θ0)ψ(θ0)⊤Ψ̇(θ0)
−1).

The above sketch is in fact a proof of the following Z-estimation theorem.

Theorem 24 (Limiting distribution for Z-estimation). Under the following conditions:

(i) Ψ̂n(θ̂n) = oP(n
−1/2),

(ii) Ψ(θ0) = 0,

(iii) Empirical process condition:
√
n(Pn − P)[ψ(θ̂n)− ψ(θ0)] = oP(1),

(iv) Ψ(θ) is Fréchet differentiable at θ0,
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(v) Ψ̇(θ0) has bounded spectrum,

we have (1) ∥θ̂n − θ0∥ = OP(n
−1/2) and

(2)
√
n(θ̂n−θ0) = −

1√
n

n∑
i=1

Ψ̇(θ0)
−1ψ(Xi; θ0)+oP(1)⇝ N(0, Ψ̇(θ0)

−1Pψ(θ0)ψ(θ0)⊤Ψ̇(θ0)
−1). (25)

Remark 25. Fréchet differentiability of Ψ(θ) = E [ψ(X; θ)] at θ = θ0 in general can be easily
checked under suitable assumptions on ψ(x; θ) and the law of PX , for standard parametric estima-
tion problems, i.e. Θ ⊂ Rd with d fixed.

We can also do the same sketch for M-estimators using optimizations.

θ̂n ∈ argmax
θ∈Θ

M̂n(θ) :=

n∑
i=1

m(Xi; θ)

where the target estimand θ0 ∈ argmax
θ∈Θ

M(θ) := nE [m(X; θ)]

(26)

The rate and distributional analysis of M-estimators are relatively more complicated.

Roadmap for analyzing M-estimators (26). Again, our goal is to show r−1
n (θ̂n − θ0) ⇝ N(0,Σ)

for some appropriate rn
4. In finite-dimensional M-estimation problems, we can safely conjecture

rn = n−1/2. The main idea is the following: define tn = r−1
n (θ̂n − θ0) and t0 ∼ N(0,Σ). The goal

is to show tn ⇝ t0. tn is the argmax of the following maximization problem:

tn = argmax
t∈T

M̂n(θ0 +
1√
n
t)

≡ argmax
t∈T

M̂n(θ0 +
1√
n
t)− M̂n(θ0)

say T = Rd or some compact subset of Rd. Now define Un(t) = M̂n(θ0 +
1√
n
t)− M̂n(θ0), which is

a stochastic process indexed by T ⊂ Rd. Then

tn = argmax
t∈T

Un(t).

Intuition: If {Un(t), t ∈ T} converges weakly to some stochastic process {U(t), t ∈ T} for
which t0 = argmaxt∈T U(t) (weak convergence between stochastic processes to be defined
later), then we can expect tn ⇝ t0.

Definition 26 (Weak convergence between (bounded) stochastic processes). For simplicity,
we only deal with bounded stochastic processes, which are in general true for M-estimation
problems. For the stochastic processes {Un(t), t ∈ T} and {U(t), t ∈ T}: Un, U : Ω→ F , are
both mappings from the sample space Ω of X to F := {f : T → R, ∥f∥∞ <∞}, the space of
bounded functions on T , often denoted as ℓ∞(T ). Then the stochastic process {Un(t), t ∈ T}
is said to converge weakly to another stochastic process {U(t), t ∈ T}, if for every continuous
function (including linear functionals) g : ℓ∞(T )→ R, g(Un(t))⇝ g(U(t)). An example of g
that will be used later is supt∈T [·] : ℓ∞(T )→ R.

4In terms of how to find appropriate rn, see Section 3.6.
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We need to further impose some conditions on the empirical and population optimization prob-
lems:

Un(tn) ≥ sup
t∈T

Un(t)− oP(1) (27)

U(t0) > sup
t̸∈G

U(t), for every open set G ⊂ T s.t. t0 ∈ G (28)

To show tn ⇝ t0, by portmanteau lemma, it is equivalent to show, for every closed F ⊂ T ,

lim sup
n

P(tn ∈ F ) ≤ P(t0 ∈ F ).

First, by (27),

P(tn ∈ F ) ≤ P(sup
t∈F

Un(t)− sup
t∈T

Un(t) + oP(1) ≥ 0)

⇒ lim sup
n

P(tn ∈ F ) ≤ lim sup
n

P(sup
t∈F

Un(t)− sup
t∈T

Un(t) ≥ 0)

Definition 26⇒ lim sup
n

P(tn ∈ F ) ≤ P(sup
t∈F

U(t)− sup
t∈T

U(t) ≥ 0).

Finally, by (28), supt∈F U(t) ≥ supt∈T U(t) implies t0 ∈ F so lim supn P(tn ∈ F ) ≤ P(t0 ∈ F )
i.e. tn ⇝ t0.

The above sketch is in fact a proof of the classical “argmax functional” theorem.

Theorem 27 (Argmax functional theorem). There exists a stochastic process {U(t) : t ∈ T}.
Under the following conditions:

(i) (27) holds,

(ii) (28) holds,

(iii) {Un(t) : t ∈ T} converges weakly to {U(t) : t ∈ T} in ℓ∞(T ),

then tn ⇝ t0.

Remark 28. A stronger argmax functional theorem can be proved by relaxing the assumptions of
Theorem 27 to the following:

(i) (27) holds,

(ii) t 7→ −U(t) is lower semicontinuous (l.s.c.)5 and t0 is the unique maxima of U(t),

(iii) {Un(t) : t ∈ T} converges weakly to {U(t) : t ∈ T} in ℓ∞(K) for every compact subset K ⊂ T ,

(iv) for every ϵ > 0, there exists a compact set Kϵ ⊂ T such that lim supn P (tn ̸∈ Kϵ) ≤ ϵ and
P (t0 ̸∈ Kϵ) ≤ ϵ.

You can read Theorem 5.56 of [? ] or Section 3.2 of [? ]. Lower semicontinuity is a modern condition
in (non-convex) optimizations. The new condition (iv) is the so-called “tightness” condition, i.e.
empirical and population optimizers are in a compact set with high probability.

5Equivalently, t 7→ U(t) is upper semicontinuous (u.s.c.), but l.s.c. is much more common in recent optimization
literature.
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3.5 Corollary on MLE

We have seen the general M-estimation theory. This theory also implies the following corollary on
MLE.

Theorem 29. For data X1, · · · , Xn
iid∼ Pθ. Denote the log-likelihood function as ℓ(x; θ), the score

function as S(x; θ) = ∂ℓ(x;θ)
∂θ ≡ ℓ̇(x; θ), and the Fisher information as I(θ) = Eθ[ℓ̇(X; θ)⊗2]. Then

under the set of regularity conditions similar to those in Theorem 27 or Theorem 24, we have

√
n
(
θ̂MLE,n − θ0

)
⇝ N(0, I(θ0)

−1). (29)

Remark 30. We make the following remarks on MLE:

1. I(θ0)
−1 is the Cramér-Rao Lower Bound. This raises the question if MLE is optimal in some

sense.

2. What if the model is wrong, say the data X actually comes from a distribution Q instead of
the posited model Pθ? What is MLE trying to estimate? We need to understand its estimand
better:

θ0 = argmax
θ∈Θ

EX∼Q[log dPθ(X)]

= argmax
θ∈Θ

∫
x
log dPθ(x)dQ(x)

= argmax
θ∈Θ

∫
x
{log dPθ(x)− log dQ(x)}dQ(x) +

∫
x
log dQ(x)dQ(x)

= argmax
θ∈Θ

∫
x
log

dPθ(x)

dQ(x)
dQ(x)

= argmin
θ∈Θ

∫
x
log

dQ(x)

dPθ(x)
dQ(x)

≡ argmin
θ∈Θ

DKL(Q||Pθ).

Thus when the model is wrong, the MLE is trying to estimate the parameter value with which
the posited model is the KL-projection of the true model Q onto the space of the posited
model {Pθ : θ ∈ Θ}.

3. Check Hodges’ phenomenon in Section 5 for super-efficiency.

4. Finally, I did not specify when E[ℓ̇(X, θ0)ℓ̇(X, θ0)⊤] ≡ −E[ℓ̈(X, θ0)], which of course relies
on the interchangeability between integral and derivative. But a modern treatment, mostly
attributed to Lucien Le Cam, is to only use the following two conditions that are sufficient
for a completely rigorous proof of the asymptotic normality of MLE: θ0 ∈ Θ ⊂ Rd,

(i) Differentiable in quadratic mean: Denote the data generating probability measure as
Pθ. There exists a function ℓ̇(θ0) ≡ ℓ̇(X, θ0) such that as θ → θ0,∫ {√

dPθ −
√
dPθ0 −

1

2
(θ − θ0)⊤ ℓ̇(θ0)

√
dPθ0

}2

= o
(
∥θ − θ0∥2

)
(30)
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(ii) Lipschitz-type continuity: There exists a function ℓ̇ such that, for every θ1, θ2 in a nbhd
of θ0

|ℓ(x, θ1)− ℓ(x, θ2)| ≤ ℓ̇(x)∥θ1 − θ2∥. (31)

This second condition implies the objective function being Donsker.

3.6 Convergence rates via optimization

This section is for self-study. Recall that we only give the sketch for deriving distributional limits
after we figured out the correct convergence rate so that r−1

n (θ̂n−θ0) = OP(1). We are still left with
the question how to derive convergence rates for general finite-dimensional M-estimation problem
from the perspective of optimization.

Here we give the following quite general theorem, which also relies on empirical process condi-
tions.

Theorem 31 (Rate theorem). Suppose the following: d a metric on Θ.

(i) supd(θ,θ0)≤δM(θ)−M(θ0) ≲ −nδα for some α > 0,

(ii) E
[
supd(θ,θ0)≤δ |

√
n (Pn − P) [m(X, θ)−m(X, θ0)]|

]
≲ δβ for some β > 0.

Then rn = n
− 1

2(α−β) s.t. r−1
n d

(
θ̂n, θ0

)
= OP(1).

Proof. Without loss of generality, we choose some C such that log2C is an integer.

P
(∣∣∣r−1

n d(θ̂n, θ0)
∣∣∣ > C

)
≤

∑
j≥log2 C

P
(
2j−1rn ≤

∣∣∣d(θ̂n, θ0)∣∣∣ ≤ 2jrn

)
.

But θ̂n ∈ Sj :=
{
θ : 2j−1rn ≤ |d(θ, θ0)| ≤ 2jrn

}
implies supθ∈Sj

M̂n(θ) − M̂n(θ0) ≳ −oP(n · n−ρn)6

for some rate ρn (this can be ensured by running the optimization algorithm to a certain precision).
We can choose appropriate ρn later. Thus

P
(∣∣∣r−1

n d(θ̂n, θ0)
∣∣∣ > C

)
≤

∑
j≥log2 C

P
(
2j−1rn ≤

∣∣∣d(θ̂n, θ0)∣∣∣ ≤ 2jrn

)

≤
∑

j≥log2 C

P

(
sup
θ∈Sj

M̂n(θ)− M̂n(θ0) ≳ −oP(n · n−ρn)

)

=
∑

j≥log2 C

P

(
sup
θ∈Sj

{M̂n(θ)−M(θ)} − {M̂n(θ0)−M(θ0)}+M(θ)−M(θ0) ≳ −oP(n · n−ρn)

)

≤
∑

j≥log2 C

P

(
sup
θ∈Sj

{M̂n(θ)−M(θ)} − {M̂n(θ0)−M(θ0)} − 2jαnrαn ≳ −oP(n · n−ρn)

)
6The extra n is because we set the scaling of M̂n as

∑n
i=1.
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=
∑

j≥log2 C

P

(
sup
θ∈Sj

{M̂n(θ)−M(θ)} − {M̂n(θ0)−M(θ0)} ≳ 2jαnrαn − oP(n · n−ρn)

)
(ii)

≤
∑

j≥log2 C

√
n2jβrβn

n2jαrαn − noP(n−ρn)

≤
∑

j≥log2 C

1√
n

2jβrβn
2jαrαn − oP(n−ρn)

.

So we can choose rβ−α
n = O(

√
n)⇒ rn = O(n

− 1
2(α−β) ) and ρn can be chosen appropriately to make

sure it is dominated by rαn .

Remark 32. The reason we divide the interval [C,∞) by geometric series 2j−1, 2j , 2j+1, · · · is
obvious: we do not want the number of summands to contribute to the final sum of the probabilities.
We will see later, for usual parametric models, β = 1 and for objective functions admitting second-
order differentiability α = 2, so the rate will be n−1/2.

The bound on the empirical process is called “modulus of continuity”. For M-estimation,
this part essentially determines the rate of convergence (as the first condition on the op-
timization landscape is not really about statistics). This is because M-estimation, at least
under the parametric regime (finite-dimensional parameter space with a lot of regularity),
is essentially a linear problem [by localizing the statistical problem with first-order (resp.
second-order) Taylor-expansion of the estimating equation (resp. optimization problem)].
In general, modulus of continuity determines the convergence rates for linear problems (this
was documented in [? ? ]).

There are a variety of regularity conditions for M/Z-estimation. For more details, you can
read relevant chapters of [? ] (Chapters 5, 18, 19, 20). But you do not have to understand
all the details of those different conditions. Just keep in mind two main things: empirical
process type conditions and some smoothness conditions on the functional Ψ(θ) or M(θ)
or the functions ψ(x, θ) and m(x, θ) (in the argument of θ) are unavoidable. For different
applications, different sets of conditions might be more suitable. You will see one example
in homework 3.

3.7 Donsker class

Now the elephant in the room is: when does the empirical process condition like (23) or Definition
26 holds? We need to introduce a new definition called the P-Donsker class. The philosophy is
again by using complexity measures like entropy. Here we focus on entropy integrals.

Definition 33 (P-Donsker class). A class F is P-Donsker if the empirical process {Gnf : f ∈ F}
converges weakly in ℓ∞(F) to a “tight” random process {GPf : f ∈ F}, where Gn[·] =

√
n(Pn−P)[·].
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Theorem 34 (Dudley’s theorem). Weak convergence between stochastic processes {Gnf :
f ∈ F} and {GPf : f ∈ F} can be equivalently characterized by the following two conditions:

(i) Weak convergence between every finite-dimensional distributions (fidi) of the stochastic
processes:

(Gnf1, · · · ,Gnfk)
⊤ ⇝ (GPf1, · · · ,GPfk)

⊤

for any finite set f1, · · · , fk ⊂ F , for every k ∈ N.

(ii) Asymptotic equicontinuity: attach to F a metric d such that for every ϵ > 0

lim
δ→0

lim sup
n→∞

P

(
sup

f,g∈F ,d(f,g)<δ
|Gn(f)−Gn(g)| > ϵ

)
= 0. (32)

Since this should be covered at some point in the stochastic processes course, please read
the proof of Theorem 18.14 of [? ]. The second “asymptotic equicontinuity” condition
ensures that the limiting process of Gn is bounded in probability (i.e. tight). Asymptotic
equicontinuity is a probabilistic version of Lipschitzness condition, and if you inspect how we
define a sub-Gaussian process in Theorem 37 carefully, you will see it is quite obvious why
sub-Gaussianity implies asymptotic equicontinuity. In fact, in many stochastic processes
textbooks, this condition is called “Lipschitz continuity” of the sample path.

We give the following two Donsker’s theorems that might be useful depending on whether
bracketing entropy or metric entropy is easier to derive for specific applications.

Theorem 35 (Donsker’s theorem with uniform metric entropy integral). Define the uniform en-
tropy integral as follows:

J(δ,F , L2) :=

∫ δ

0
sup
Q

√
logN(ϵ∥F∥L2(Q),F , L2(Q))dϵ

F has envelope F such that PF 2 <∞. If J(1,F , L2) <∞, then F is P-Donsker.

Proof. By Theorem 34, we only need to check the asymptotic equicontinuity part. First, define a
new function class

Gδ :=
{
f − g : f, g ∈ F , ∥f − g∥L2(P) ≤ δ

}
.

Obviously, Gδ has an envelope 2F . For any ϵ > 0,

lim
δ→0

lim sup
n

P

(
sup
h∈Gδ

|Gnh| ≥ ϵ

)

≤ 1

ϵ
lim
δ→0

lim sup
n

E

[
sup
h∈Gδ

|Gnh|

]
.

Now we can put on our empirical process theory hat and try to control E
[
suph∈Gδ

|Gnh|
]
. In

particular, we have the following lemma:
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Lemma 36. F has an envelope F . Then

E

[
sup
f∈F
|Gnf |

]
≲ J(1,F , L2)∥F∥L2(P).

Finally, by inspecting the proof of Lemma 36,

E

[
sup
h∈Gδ

|Gnh|

]
≲
∫ supf∈Gδ

∥f∥L2(Pn)/∥2F∥L2(Pn)

0

√
logD(ϵ∥2F∥L2(Pn),Gδ, L2(Pn))∥2F∥L2(Pn)dϵ

≲
∫ supf∈Gδ

∥f∥L2(Pn)/∥F∥L2(Pn)

0
sup
Q

√
logD(ϵ∥2F∥L2(Q),Gδ, L2(Q))dϵ∥F∥L2(Pn).

Since J(1,F , L2) is bounded, the integrand in the above display should be integrable, and the upper
limit supf∈Gδ

∥f∥L2(Pn) → 0 as δ → 0, the final integral converges to 0 by dominated convergence
theorem.

Proof of Lemma 36. The proof requires some new techniques. But as before, we start with the
usual symmetrization trick.

E

[
sup
f∈F
|Gnf |

]
≤ 2EXEε

[
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

Let us bound the Rademacher process term first:

Eε

[
sup
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

εif(Xi)

∣∣∣∣∣
]

≲
∫ supf∈F ∥f∥L2(Pn)

0

√
logD(ϵ,F , L2(Pn))dϵ

=

∫ supf∈F ∥f∥L2(Pn)/∥F∥L2(Pn)

0

√
logD(ϵ′∥F∥L2(Pn),F , L2(Pn))∥F∥L2(Pn)dϵ

′

≤ ∥F∥L2(Pn)

∫ 1

0

√
logD(ϵ∥F∥L2(Pn),F , L2(Pn))dϵ.

where L2(Pn) denotes the L2-norm of a function with respect to the empirical distribution of the

data i.e. ∥f∥L2(Pn) =
{

1
n

∑n
i=1 f(Xi)

2
}1/2

, the first line inequality follows from the famous Dudley’s
entropy integral bound for sub-Gaussian processes (see Theorem 37), the second line equality is
due to a change of variable, and the third line inequality follows because F is an envelope so
supf∈F ∥f∥L2(Pn)/∥F∥L2(Pn) ≤ 1.

Finally, we marginalize over X:

E

[
sup
f∈F
|Gnf |

]

≤ 2EX

[
∥F∥L2(Pn)

∫ 1

0

√
logD(ϵ∥F∥L2(Pn),F , L2(Pn))dϵ

]
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≤ 2EX

[
∥F∥L2(Pn)

] ∫ 1

0
sup
Q

√
logD(ϵ∥F∥L2(Q),F , L2(Q))dϵ

≡ 2EX

( 1

n

n∑
i=1

F (Xi)
2

)1/2
∫ 1

0
sup
Q

√
logD(ϵ∥F∥L2(Q),F , L2(Q))dϵ

≤ 2
(
EXF (X)2

)1/2︸ ︷︷ ︸
=:∥F∥L2(P)

∫ 1

0
sup
Q

√
logD(ϵ∥F∥L2(Q),F , L2(Q))dϵ︸ ︷︷ ︸

=:J(1,F ,L2)

.

Theorem 37 (Dudley’s entropy integral bound for sub-Gaussian processes; chaining argument).
Consider a stochastic process (Xt, t ∈ T ) indexed by a separable7 metric space (T, d). Further we
assume it is a sub-Gaussian process, which generalizes Gaussian process by only inheriting its tail
probability:

P (|Xt −Xs| > u) ≤ 2 exp

(
− u2

2d(s, t)2

)
, for any s, t ∈ T and u > 0. (33)

Then for some fixed t0 ∈ T ,

E
[
sup
t∈T
|Xt −Xt0 |

]
≲

N∑
k=1

2−k
√
logD(ϵk, T,d) ≲

∫ D/2

0

√
logD(ϵ, T,d)dϵ

where D is the diameter of T , i.e. D := supt,s∈T d(s, t).

Proof. In the proof, we will go at a very slow pace to see how Richard Dudley’s chaining argument
was developed. Chaining argument is one of the center pillars of modern machine learning theory.
Xt0 can be treated as a constant, e.g. 0.

We assume T to be countable. If T is not countable, then we can simply take a dense countable
subset of T by its separability. In the calculations for Glivenko-Cantelli theorem, we take a maximal
ϵ1-packing, say T1, so |T1| = D(ϵ1, T,d). We then essentially did the following calculations: For
every t, we call π1(t) the projection of t onto the ϵ1-packing T1, then

E
[
sup
t∈T
|Xt −Xt0 |

]
= E

[
sup
t∈T
|Xt −Xπ1(t) +Xπ1(t) −Xt0 |

]
≤ E

[
sup
t∈T
|Xπ1(t) −Xt0 |

]
︸ ︷︷ ︸

I0

+E
[
sup
t∈T
|Xt −Xπ1(t)|

]
︸ ︷︷ ︸

I1

.

Now we analyze each term separately. I0 is obviously a familiar term, and can be handled by
maximal inequality because there are only finitely many differentXπ1(t)−Xt0 for t ∈ T as π1(t) ∈ T1.
I1, though, is not as nice as it looks. In the Glivenko-Cantelli case, the corresponding Xt, due to the
scaling of 1

n instead of the scaling of 1√
n
in the Donsker case, is not a random variable asymptotically

(i.e. deterministic quantity). But in the Donsker case or in the context of this theorem, Xt

7A space which has a dense countable subset.
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is a random variable. In the above decomposition, supt∈T d(t, π1(t)) ≤ ϵ, which implies certain
high-probability uniform closeness between Xt and Xπ1(t) by sub-Gaussianity; otherwise T1 is not
maximal.

Now let us suppose T is even finite. We can choose a smaller ϵ2 < ϵ1 and a finer (higher-
resolution) maximal ϵ2-packing T2 and further decompose the above display as

E
[
sup
t∈T
|Xt −Xt0 |

]
≤ E

[
sup
t∈T
|Xπ1(t) −Xt0 |

]
+ E

[
sup
t∈T
|Xπ2(t) −Xπ1(t)|

]
+ E

[
sup
t∈T
|Xt −Xπ2(t)|

]
.

We repeat the above scheme N times: since T is finite, there must exist a finite N such that
the maximal ϵN -packing TN ≡ T so πN (t) ≡ t. Hence

E
[
sup
t∈T
|Xt −Xt0 |

]
≤

N∑
k=1

E
[
sup
t∈T
|Xπk(t) −Xπk−1(t)|

]
.

Now each term within the expectation is a supremum over finitely many possible choices πk(t)
and πk+1(t) because Tk and Tk+1 are finite. Thus we can use maximal inequality to control each
summand as:

E
[
sup
t∈T
|Xπk(t) −Xπk−1(t)|

]
≲ d(πk(t), πk−1(t))

√
log |Tk−1||Tk|

≤ 2ϵk−1

√
log |Tk|2 = 2ϵk−1

√
2 logD(ϵk, T,d)

where the second line inequality follows from Xπk(t) − Xπk−1(t) being sub-Gaussian with variance

proxy d(πk(t), πk−1(t))
2. Now if we choose ϵk−1 ≲ ϵk (but remember ϵk < ϵk−1), we have

E
[
sup
t∈T
|Xπk(t) −Xπk−1(t)|

]
≲ ϵk

√
logD(ϵk, T,d).

Thus

E
[
sup
t∈T
|Xt −Xt0 |

]
≲

N∑
k=1

ϵk
√

logD(ϵk, T,d) ≤
N∑
k=1

∫ ϵk

ϵk+1

√
logD(ϵ, T,d)dϵ

≤
∫ ϵ1

ϵN+1

√
logD(ϵ, T,d)dϵ ≤

∫ ϵ1

0

√
logD(ϵ, T,d)dϵ.

How should we choose ϵk such that ϵk−1 ≲ ϵk but ϵk < ϵk−1? For ϵ0, we do not have much
choice than the diameter D because T0 is a maximal ϵ0-packing of T containing t0, which means
supt d(t, t0) ≲ ϵ0. The fastest rate that ϵk converges to 0 is then exponential to make sure ϵk and
ϵk−1 are on equal order. Thus we can choose ϵk = D2−k.

Finally, remember we are still assuming T is finite. However, does it really matter? When T is
countable, we can simply choose any finite subset T †

J ⊂ T with cardinality J and establish

E sup
t∈T †

J

|Xt −Xt0 | ≲
∫ D/2

0

√
logD(ϵ, T,d)dϵ.
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Since the upper bound does not depend on J , we have

lim
J→∞

E sup
t∈T †

J

|Xt −Xt0 | ≲
∫ D/2

0

√
logD(ϵ, T,d)dϵ.

In fact, building on an important result by Aad van der Vaart and Jon Wellner [? ], in 2014,
Victor Chernozhukov proved one of the most powerful versions of the maximal inequality as
far as I know:

Lemma 38 (Theorem 5.2 of [? ]). Suppose there exists σ > 0 such that supf∈F Pf2 ≤ σ2 ≤
PF 2, set δ :=

σ

∥F∥L2(P)
and C :=

√
Pmax1≤i≤n F (Xi)2. Then

E

[
sup
h∈Gδ

|Gnh|

]
≲ J(δ,F , L2)∥F∥L2(P) +

CJ(δ,F , L2)
2

δ2
√
n

. (34)

The proofs of the above lemma by both papers are quite simple and pedagogical. You should
read the proofs on your own.

Theorem 39 (Donsker’s theorem with bracketing entropy integral). F has envelope F such that
PF 2 <∞. If J[ ](1,F , L2(P)) <∞, then F is P-Donsker.

Proof. The proof idea is drastically similar so we omit the proof here. The maximal inequality part
is a bit technical and you can look at Lemma 19.34 of [? ].

Bracketing entropies have been derived for many important function classes (Lipschitz, Sobolev,
Hölder, Besov, ...) in [? ]. Also see many examples in [? ].

For instance, for the class of α-smooth functions:

F =
{
f : Rd → R is ⌊α⌋-differentiable and f (⌊α⌋) is (α− ⌊α⌋)-Hölder continuous

}
of which the bracketing entropy is know to be (1/ϵ)d/α. Then it is easy to see that its bracketing
entropy integral is finite if α > d/2. For example, if d = 20, then the underlying function needs
more than 10 derivatives to be Donsker.

3.8 Generic chaining; Talagrand γ2 functional

Dudley’s chaining argument, as powerful as it is, does not achieve tight result for Gaussian processes.
By Sudakov’s inequality:

E sup
t∈T

Xt ≳ sup
ϵ>0

ϵ
√
logD(ϵ, T,d),

so there is a gap between this lower bound and the upper bound of Dudley’s entropy integral
theorem.
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I will not have time to cover all the amazing things about Gaussian processes, including
Slepian’s and Sudakov-Fernique’s Gaussian comparison inequalities, Gaussian interpolation
techniques, and Gordon’s inequality. You should learn these materials from Chapter 7 of [?
].

Talagrand made a monumental contribution by closing this gap via an improved chaining tech-
nique, called “generic chaining”. Roman Vershynin’s book [? ] explained how he interpreted the
reasoning behind the generic chaining technique. But it is still not super clear to me, in particular
why Talagrand chose the size of the maximal packings to be 22

k
. Here is my own understanding.

First, let us recall Dudley’s entropy integral bound before turned into an integral (for short, we
call it Dudley’s D2 functional):

D2 :=
N∑
k=1

sup
t∈T

√
logD(ϵk, T,d) · d(t, πk(t)) ≲

N∑
k=1

sup
t∈T

√
logD(ϵk, T,d) · 2−k.

So Dudley fix the resolution ϵk ≍ 2−k and then obtain the maximal ϵk-packing Tk for every resolu-
tion from k = 0, · · · , N .

Talagrand, however, took a dual viewpoint: he fixed the size of some maximal packing T a
k to

be 22
k
then looked for the corresponding resolution level ϵk. Of course, the larger the size of T a

k ,
the higher the resolution we are trying to approximate T . So the “pre-dual” of D2 is

D†
2 :=

N∑
k=1

sup
t∈T

√
logD(ϵk, T,d) · d(t, πk(t)) ≤

N∑
k=1

sup
t∈T

√
log 22k · d(t, πk(t)).

Talagrand’s first move is to pull sup in front of the summation, obtaining:

D∗
2 := sup

t∈T

N∑
k=1

√
logD(ϵk, T,d) · d(t, πk(t)) ≤ sup

t∈T

N∑
k=1

√
log 22k · d(t, πk(t)) ≲ sup

t∈T

N∑
k=1

2k/2d(t, πk(t)).

Obviously, D∗
2 ≤ D

†
2. So if one can show D∗

2 is an upper bound, it must be tighter than D†
2.

Since the above quantity is important historically, people have given it a name: Talagrand’s γ2
functional

γ2 := inf
(Ta

k )
sup
t∈T

N∑
k=1

2k/2d(t, πk(t)) (35)

where Talagrand even optimized over all possible maximal packings satisfying the 22
k
size condition.

Theorem 40 (Talagrand’s generic chaining theorem). For a zero-mean sub-Gaussian process
(Xt, t ∈ T ) with (T, d), we have

E
[
sup
t∈T
|Xt|

]
≲ γ2. (36)

Proof. As before, with the notation Xπ0(t) ≡ 0,

Xt =

N∑
k=1

Xπk(t) −Xπk−1(t).
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Since now supt∈T is outside the summation
∑N

k=1, we need to instead show a uniform bound on

|Xπk(t) −Xπk−1(t)|

uniformly over t. By sub-Gaussianity, the variance proxy for Xπk(t) − Xπk−1(t) is upper bounded
by d(πk(t), πk−1(t)) up to constant. We want to bound

P

(
sup
t∈T

N∑
k=1

|Xπk(t) −Xπk−1(t)| > u

)
≲?

Observation: the event

{
supt∈T

N∑
k=1

|Xπk(t) −Xπk−1(t)| > uR

}
, withR = supt∈T

N∑
k=1

√
log |T a

k |d(t, πk(t)),

implies{
|Xπk(t) −Xπk−1(t)| > u

√
log |T a

k |d(t, πk(t)), for some t ∈ T and for some k = 1, · · · , N
}
.

This is because the contra-positive of the above statement obviously holds. Hence, by union bound,

P

(
sup
t∈T

N∑
k=1

|Xπk(t) −Xπk−1(t)| > uR

)
≤ P

(
|Xπk(t) −Xπk−1(t)| > u

√
log |T a

k |d(t, πk(t)), for some t ∈ T and for some k = 1, · · · , N
)

≤
∑

t∈T,1≤k≤N

P
(
|Xπk(t) −Xπk−1(t)| > u

√
log |T a

k |d(t, πk(t))
)

≤
N∑
k=1

|T a
k |T a

k−1| exp
{
−
u2 log |T a

k |d(t, πk(t))2

2d(t, πk(t))2

}
=

N∑
k=1

|T a
k |T a

k−1| exp
{
−
u2 log |T a

k |
2

}
.

To make sure the summation is addable, we need to choose the size T a
k such that

|T a
k |2 ≲ e

u2 log |Ta
k |

2

which gives us |T a
k | = 22

k
.

Finally (you should check the following calculations on your own): with some constant c > 0
chosen appropriately,

E
[
supt∈T |Xt|

R

]
=

∫ ∞

0
P
(
sup
t∈T
|Xt| > uR

)
du

= c+

∫ ∞

c
P
(
sup
t∈T
|Xt| > uR

)
du

≲ c+
∫ ∞

c

N∑
k=1

23·2
k−1

exp
{
−u22k−1

}
du

= c+

∫ ∞

c

N∑
k=1

23·2
k−1

exp
{
−u22k−1

}
du
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= c+

N∑
k=1

23·2
k−1

∫ ∞

c
e−u22k−1

du

= c+
N∑
k=1

23·2
k−1

2−
k
2

∫ ∞

c2k/2
e−

u2

2 du︸ ︷︷ ︸
Tail of N(0, 1)

≲ c+
N∑
k=1

2−
k
2 23·2

k−1
e−

c22k

2 .

So we can choose c such that 23·2
k−1

e−
c22k

2 = O(1) and the proof is done.

Talagrand invented more than one technique to improve Dudley’s chaining argument. An
alternative method to generic chaining is “majorizing measure” [? ], which is the tool to
show that for Gaussian process (Xt, t ∈ T ),

E sup
t∈T

Xt ≍ γ2.

3.9 Some concrete examples

Concrete examples of M/Z-estimation can be found in Chapter 5 of [? ], including sample median,
robust estimation, and etc. We will leave this part for self-study.

But we will consider the following somewhat more abstract application of how to apply what
we have learnt so far.

Theorem 41. Consider M-estimation with objective function m(x, θ), θ ∈ Θ ⊂ Rd, Θ open.
Moreover, almost surely at the true law P, θ 7→ m(x, θ) is differentiable at θ0 ∈ Θ with derivative
ṁ(x, θ0), and that for F ∈ L2(P), we have

|m(x, θ1)−m(x, θ2)| ≤ F (x)∥θ1 − θ2∥

for all θ1, θ2 in N (θ0). Suppose

Pm(θ)− Pm(θ0) =
1

2
(θ − θ0)⊤V (θ − θ0) + o(∥θ − θ0∥2)

where V is symmetric and negative definite. If θ̂n →P θ0, then

√
n(θ̂n − θ0) = −V −1Gn(ṁ(θ0)) + oP(1)⇝ N(0, V −1P(ṁ(θ0)ṁ(θ0)

⊤)V −1).

Proof. Consider the optimization perspective. Define

Un(t) =
n∑

i=1

m(Xi, θ0 + tn−1/2)−m(Xi, θ0).

We need to find its limiting stochastic process U(t). Guess: U(t) = t⊤Gn(ṁ(θ0)) +
1
2 t

⊤V t.
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4 Concentration of measures

4.1 Talagrand inequalities

We start off with the following Bernstein inequality without proof. This theorem has been proved
many times in different books; e.g. see Chapter 3.1 of [? ].

Theorem 42 (Bernstein inequality).

1. X a mean-zero random variable with MGF satisfying for some ν > 0

EeλX ≤ exp
(
ν(eλ − 1− λ)

)
, λ > 0.

Then for any u ≥ 0, define h(x) = (1 + x) log(1 + x)− x, we have

P (X ≥ u) ≤ exp (−νh(u/ν)) ≤ exp

(
−3u

4
log

(
1 +

2u

3ν

))
≤ exp

(
− u2

2ν + 2u/3

)
,

P
(
X ≥

√
2νu+ u/3

)
≤ e−u.

(37)

2. X ∼ sub-exponential(0, σ, α) i.e.

EeλX ≤ e
λ2σ2

2 for |λ| < 1

α
.

Then for any u > 0,

P (X ≥ u) ≤ exp

(
− u2

2σ2 + 2αu

)
. (38)

Bernstein inequality can be tighter than Hoeffding inequality even for certain bounded random
variables: e.g. Bernoulli.

Corollary 1.

1. For X1, · · · , Xn independent random variables with |Xi| ≤ B almost surely for some B > 0
for all i = 1, · · · , n. Denote σ2 := 1

n

∑n
i=1 EX2

i .

Eeλ
∑n

i=1 Xi ≤ exp

(
nσ2

B2
(eλB − 1− λB)

)
, λ > 0.

Then for any u ≥ 0,

P

(
n∑

i=1

Xi ≥ u

)
≤ exp

(
−nσ

2

B2
h

(
uB

nσ2

))
≤ exp

(
− 3u

4B
log

(
1 +

2uB

3nσ2

))
≤ exp

(
− u2

2nσ2 + 2Bu/3

)

P

(
n∑

i=1

Xi ≥
√
2nσ2u+Bu/3

)
≤ e−u.

(39)
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2. For X1, · · · , Xn independent sub-exponential random variables sub-exponential(0, σi, α).

P

(
n∑

i=1

Xi ≥ u

)
≤ exp

(
− u2

2nσ2 + 2αu

)
. (40)

Remark 43. For bounded random variables, we make the following comparison between Bernstein
and Hoeffding: since Bernstein inequality uses the variance information, it is generally tighter than
Hoeffding inequality, which only uses the bound.

sub-Gaussian and sub-exponential random variables are special cases of a more general class
of random variables – sub-Weibull. You may find relevant results in the paper [? ], which
essentially rewrites many results from Martin Wainwright’s high-dimensional statistics book
and Victor Chernozhukov’s maximal inequality [? ] in a more unified framework. I did not
have time to cover sub-Gaussian and sub-exponential random variables in detail: e.g. what
is the so-called Orlicz/gauge norm. You may learn all these details from [? ].

Talagrand inequality is essentially Bernstein inequality for stochastic processes (Xt, t ∈ T ). In
this course, we will prove the following version of Talagrand inequality.

Theorem 44 (Talagrand inequality: Bousquet upper tail). Let X1, · · · , Xn be independent random
variables. Let F be a countable set of functions f such that ∥f∥∞ ≤ B for some B > 0 and
Ef(X1) = · · · = Ef(Xn) = 0. Define

Zn := sup
f∈F

n∑
i=1

f(Xi), σ
2 :=

1

n

n∑
i=1

sup
f∈F

Ef(Xi)
2, νn := 2BEZn + nσ2.

Then for any λ > 0,

Eeλ(Zn−EZn) ≤ eνn(eλ−1−λ),

P (Zn ≥ EZn + u) ≤ exp

(
− u2

2νn + 2Bu/3

)
,

P
(
Zn ≥ EZn +

√
2νnu+Bu/3

)
≤ e−u.

(41)

The conclusion also holds if we define Zn := supf∈F |
∑n

i=1 f(Xi)|.

Before proving Theorem 44, we make some comments. Talagrand inequality is actually a series
of inequalities that concern with the following philosophy/phenomenon as explained by Talagrand
himself:

For a (nonlinear) function of n random variables f(X1, · · · , Xn), when f is sufficiently
smooth/regular/nice, f(X1, · · · , Xn) should be roughly a constant, highly concentrating
around Ef(X1, · · · , Xn).

Proof. Without loss of generality, we take B = 1. It is sufficient to prove

logEeλ(Zn−EZn) ≤ νn
(
eλ − 1− λ

)
.
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The high probability bound follows from the log-MGF bound.
To prove the log-MGF bound, we need to introduce the following important quantity and

the so-called “entropy method” based on log-Sobolev inequality: for any measurable function
f(X1, · · · , Xn) ≥ 0, the entropy functional with respect to the measure µ is

Entµf := Eµf log f − Eµf logEµf.

We gather the following facts about Entµf :

Lemma 45 (Facts about Entµf).

1. Entµf is homogeneous of degree 1: Entµλf = λEntµf ; by homogeneity, without loss of gener-
ality, we assume Eµf ≡ 1 in the proof.

2. Variational characterization of entropy functional

Entµf ≡ sup

{∫
fgdµ :

∫
egdµ ≤ 1

}
(42)

Entµf ≡ inf

{∫
[f log f − (log t+ 1)f + t]dµ : t ≥ 0

}
(43)

As a corollary of (43), one has

Entµe
f ≡ inf

{∫
ϕ(−(f − t))efdµ : t ∈ R

}
(44)

where ϕ(x) = ex − 1− x.

3. Entµf tensorizes in the following sense:

Entµf ≤
n∑

i=1

∫
x−i

Entµifdµ(x). (45)

4. If ∥f∥∞ ≤ 1, then for any λ > 0

Entµe
λf ≤

∫
ϕ(−λf)eλfdµ ≤ ϕ(−λ)eλ

eλ − 1
2︸ ︷︷ ︸

≡m(λ)

∫
f ·
(
eλf +

1

2
f − 1

)
dµ. (46)

Proof of Lemma 45.

1. Simple algebra.

2. We can use the following version of Young’s inequality: for x ∈ R and y ≥ 0, xy ≤ y log y −
y + ex and equality holds when y = ex. Hence take x as g and y as f , we have, setting
g∗ = log f

max
g

∫
fgdµ =

∫ (
f log f − f + eg

∗
)
dµ ≡

∫
(f log f − f + f) dµ ≡ Entµf.
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3. Since x 7→ x log x is convex for x ≥ 0,∫
f log fdµ = inf

t

∫ [
f log f − t log t− (f − t)(t log t)′

]
dµ

= inf
t

∫
[f log f − t log t− (f − t)(1 + log t)] dµ

= inf
t

∫
[f log f − (log t+ 1) + t] dµ.

4. For any g, define

g1(x) = log
eg(x)∫

x1
eg(x)dµ1

, gi(x) = log

∫
x1,··· ,xi−1

eg(x)dµ1 · · · dµi−1∫
x1,··· ,xi

eg(x)dµ1 · · · dµi
, i ≥ 2.

Then

g ≤ g − log

∫
eg(x)dµ =

n∑
i=1

gi.

Hence take the optimal g∗,

Entµf =

∫
fg∗dµ ≤

n∑
i=1

∫
fg∗i dµ ≤

n∑
i=1

∫
Entµifdµ.

5. Taking t = 0 in (44), we have

Entµe
λf ≤

∫
ϕ(−λf)eλfdµ

=

∫ (
e−λf − 1 + λf

)
eλfdµ

=

∫ (
1− eλf + λfeλf

)
dµ.

Next we observe 1−eλf+λfeλf

f(eλf+ 1
2
f−1)

attains maxima at f ≡ 1, at which the maxima equals m(λ) ≡
ϕ(−λ)eλ

eλ− 1
2

.

Lemma 45 are about the properties of the entropy functional. For this version of Talagrand
inequality, we also have quite a special f – suprema of sum of independent random variables. We
further utilize this special structure. First, it is quite obvious Zn is subadditive in the following
sense

Lemma 46 (Subadditivity of Zn). Suppose ∥f∥∞ ≤ 1 and also Ef(X) = 0. Define

Z(k)
n := max

f∈F

n∑
i=1,i ̸=k

f(Xi).
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Then we have

Zn − Z(k)
n ≤ 1, (n− 1)Zn ≤

n∑
k=1

Z(k)
n , Zn − EkZn ≤ Zn − Z(k)

n ≤ 1 (47)

where Ek[·] ≡ E[·|X1, · · · , Xk−1, Xk+1, · · · , Xn]. Also, there exists random variables Yk such that

Yk ≤ Zn − Z(k)
n and EkYk = 0 and

1

n

n∑
k=1

EkY
2
k ≤

1

n

n∑
i=1

sup
f∈F

Ef(Xi)
2.

Proof of Lemma 46. Zn−Z(k)
n ≤ 1 is obvious from the definition. Take f∗ = argmaxf∈F

∑n
i=1 f(Xi)

and f∗k = argmaxf∈F
∑n

i=1,i ̸=k f(Xi). Then

n∑
k=1

Zn − Z(k)
n ≤

n∑
k=1

 n∑
i=1

f∗(Xi)−
n∑

i=1,i ̸=k

f∗(Xi)

 =
n∑

k=1

f∗(Xk) = Zn

⇒ (n− 1)Zn ≤
n∑

k=1

Z(k)
n .

Next:

Zn − EkZn ≤ Zn − Ek

 n∑
i=1,i ̸=k

f∗k (Xi) + f∗k (Xk)


= Zn −

n∑
i=1,i ̸=k

f∗k (Xi)− Ek[f
∗
k (Xk)] = Zn − Z(k)

n ≤ 1.

Finally, we take Yk ≡ f∗k (Xk).

Combining the above two lemma, we have

EntPe
λZn

Lemma 45.3
≤

n∑
k=1

E
[
EntPk

eλZn

]
Lemma 45.1
≤

n∑
k=1

E
[
eλEkZnEntPk

eλ(Zn−EkZn)
]

Lemma 45.4, 46
≤ m(λ)

n∑
k=1

E
[
eλEkZnEk

(
(Zn − EkZn)e

λ(Zn−EkZn) +
1

2
(Zn − EkZn)

2 − (Zn − EkZn)

)]

= m(λ)
n∑

k=1

E
[
eλEkZn

(
Ek(Zn − EkZn)e

λ(Zn−EkZn) +
1

2
Ek(Zn − EkZn)

2

)]

= m(λ)

n∑
k=1

E
[
Ek(Zn − EkZn)e

λZn +
1

2
Ek(Zn − EkZn)

2eλEkZn

]

1-37



Jensen
≤ m(λ)

n∑
k=1

E
[
EkZne

λZn − EkZnEke
λZn +

1

2
Ek(Zn − EkZn)

2Eke
λZn

]

= m(λ)

(
EZne

λZn + E(n− 1)Zne
λZn − E

n∑
k=1

[
EkZnEke

λZn − 1

2
Ek(Zn − EkZn)

2Eke
λZn

])
Lemma 46
≤ m(λ)

(
EZne

λZn + E
n∑

k=1

Z(k)
n Eke

λZn − E
n∑

k=1

[
EkZnEke

λZn − 1

2
Ek(Zn − EkZn)

2Eke
λZn

])

= m(λ)

(
EZne

λZn + E

[
n∑

k=1

(
Z(k)
n − EkZn +

1

2
Ek(Zn − EkZn)

2

)
Eke

λZn

])

= m(λ)

(
EZne

λZn + E

[
n∑

k=1

(
Z(k)
n − EkZn +

1

2
Ek(Zn − EkZn)

2

)
eλZn

])
Lemma 46
≤ m(λ)

(
EZne

λZn + E

[
n∑

k=1

(
−Ek(Zn − Z(k)

n ) +
1

2
Ek(Zn − Z(k)

n )2
)
eλZn

])
Lemma 46
≤ m(λ)

EZne
λZn + E

 n∑
k=1

−EkYk︸ ︷︷ ︸
≡0

+
1

2
EkY

2
k

 eλZn


≡ m(λ)

(
EZne

λZn + E

[
1

2

n∑
k=1

EkY
2
k e

λZn

])
.

Consequently, we have, by homogeneity,

EntPe
λ(Zn−EZn) ≤ m(λ)

(
EZne

λ(Zn−EZn) + E

[
1

2

n∑
k=1

EkY
2
k e

λ(Zn−EZn)

])

= m(λ)

(
E(Zn − EZn)e

λ(Zn−EZn) + E

[(
1

2

n∑
k=1

EkY
2
k + EZn

)
eλ(Zn−EZn)

])

= m(λ)

(
E(Zn − EZn)e

λ(Zn−EZn) +

(
1

2
nσ2 + EZn

)
E
[
eλ(Zn−EZn)

])
.

We make a note here: the second line in the above display is the so-called modified log-Sobolev
inequality, where log-Sobolev inequality is for Gaussian random variables. The above calculation,
which we called entropy method, is also called Herbst argument.

Finally, some calculus trick. Define L(λ) := logEeλ(Zn−EZn) as the log-MGF. Then

L′(λ) =
{
Eeλ(Zn−EZn)

}−1
E(Zn − EZn)e

λ(Zn−EZn)

We observe that for the above inequality,

LHS = Eλ(Zn − EZn)e
λ(Zn−EZn) − Eeλ(Zn−EZn) logEeλ(Zn−EZn)

= λE(Zn − EZn)e
λ(Zn−EZn) − L(λ)Eeλ(Zn−EZn)

= (λL′(λ)− L(λ))Eeλ(Zn−EZn)
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and

RHS = m(λ)

(
L′(λ)Eeλ(Zn−EZn) +

(
1

2
nσ2 + EZn

)
Eeλ(Zn−EZn)

)
.

Hence

(λ−m(λ))L′(λ)− L(λ) ≤ m(λ)

(
1

2
nσ2 + EZn

)
⇒

λeλ − 1
2λ− 1 + eλ − λeλ

eλ − 1
2

L′(λ)− L(λ) ≤ (1− eλ + λeλ)

eλ − 1
2

(
1

2
nσ2 + EZn

)
⇒

eλ − 1
2λ− 1

eλ − 1
2

L′(λ)−
eλ − 1

2

eλ − 1
2

L(λ) ≤ (1− eλ + λeλ)

eλ − 1
2

(
1

2
nσ2 + EZn

)
⇒
(
eλ − 1

2
λ− 1

)
L′(λ)−

(
eλ − 1

2

)
L(λ) ≤

(
1− eλ + λeλ

)(1

2
nσ2 + EZn

)
⇒

(
L(λ)

eλ − 1
2λ− 1

)′

≤
(
1

2
nσ2 + EZn

)(
− λ

eλ − 1
2λ− 1

)′

⇒ L(λ) ≤ (eλ − 1− λ)νn.

Apart from the above Bousquet upper tail, we also have the following:

Theorem 47 (Talagrand inequality: Klein/Rio lower tail). Under the same conditions as in The-
orem 44, we have for any λ > 0,

Ee−λ(Zn−EZn) ≤ e
νn
16

(e4λ−1−4λ). (48)

You may also find some other versions of Talagrand inequalities. For example:

Theorem 48. Again let f ≡ f(X1, · · · , Xn). If f satisfies

f(x)− f(y) ≤
n∑

i=1

ci(x)1{xi ̸= yi},∀x, y

then

P (f − Ef ≥ u) ≤ exp

(
−u2/∥2

n∑
i=1

c2i ∥∞

)

P (f − Ef ≤ −u) ≤ exp

(
−u2/∥2

n∑
i=1

c2i ∥∞

)
.

You can find the proof in Chapter 4 of [? ], which heavily relies on techniques related to
Wasserstein distance, which we will not have time to cover. But the above theorem has an important
corollary:

Corollary 2. X1, · · · , Xn
ind.∼ [0, 1]. If f is convex, then f(X1, · · · , Xn) is ∥∥∇f∥2ℓ2∥∞-sub-

Gaussian.

This corollary is quite useful if you want to control norms, if they are convex.
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4.1.1 Applications

My favorite application of Talagrand inequality is exponential inequality for second-order U -
statistic. You should try to go through the proof (Chapter 3 of [? ]) at least once in your
life time.

Another classical application of Talagrand inequality is the following Dvoretzky-Kiefer-Wolfowitz
non-asymptotic concentration of empirical measures.

Theorem 49 (Dvoretzky-Kiefer-Wolfowitz).

P
(
∥
√
n (Pn[1·]− P[1·]) ∥∞ > u

)
≲ exp

(
−u

2

C

)
.

for some constant C > 0.

For its proof, see homework 3.
For other applications, you will find them when you read papers in statistics and machine

learning.

4.2 Anti-concentration inequality

Talagrand inequality is essentially a “concentration of measure” phenomenon [? ]. In the prob-
ability and nonparametric statistics literature, you will hear another related concept called anti-
concentration. But it is not about showing the reverse of the above concentration result. Anti-
concentration inequalities are related to deriving lower bounds, which are often much more difficult
than upper bounds (Sourav Chatterjee’s recent paper [? ] establishes a somewhat more general
framework).

Theorem 50 (Anti-concentration of Gaussian maxima [? ]). Let (Xt, t ∈ T ) be a zero-mean
unit-variance Gaussian process indexed by a metric space (T, d). Then

sup
x∈R

P
(∣∣∣∣sup

t∈T
Xt − x

∣∣∣∣ ≤ ε) ≲ ε(E sup
t∈T

Xt ∨ 1

)
,

sup
x∈R

P
(∣∣∣∣sup

t∈T
|Xt| − x

∣∣∣∣ ≤ ε) ≲ ε(E sup
t∈T
|Xt| ∨ 1

)
.

(49)

Thus anti-concentration is saying Gaussian maxima does not concentrate “near” any particular
number; whereas concentration of measure is saying that Gaussian maxima is “near” its expectation.
But the scales of “nearness” between “concentration” and “anti-concentration” are quite different.
Anti-concentration inequality is very useful in constructing confidence sets; see the application in
[? ].

5 Hodges’ phenomenon

We have seen in Theorem 29 that under regularity conditions, MLE asymptotically achieves the
Cramér-Rao bound (but recall that we have a sharp lower bound for only unbiased estimators,
which in general are not MLE). One may ask, is MLE optimal? If not, does there exist any
estimator that beats MLE? If yes, in what sense MLE is optimal.
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Consider the simple problem of estimating µ by X1, · · · , Xn
iid∼ N(µ, 1). Obviously, X̄ is the

MLE of µ. Joseph Hodges asked if it is possible to obtain a better estimator than X̄. He proposed
the following estimator:

µ̂super =

{
X̄ X̄ > n−1/4,

0 X̄ < n−1/4.
(50)

The “merit” of µ̂super was argued based on the following analysis: Denote Z ∼ N(0, 1) and ϕ
and Φ to be its PDF and CDF.

• At θ = 0,

lim
n→∞

Pθ=0

(
|X̄| < n−1/4

)
= lim

n→∞
Pθ=0

(
|
√
n(X̄ − 0)| < n1/4

)
= lim

n→∞
P(|Z| < n1/4)

= lim
n→∞

Φ(n1/4)− Φ(−n1/4)

= Φ(∞)− Φ(−∞) = 1.

Hence µ̂super is asymptotically unbiased for θ = 0 with an asymptotic variance equal to 0.

• At any θ ̸= 0,

lim
n→∞

Pθ

(
|X̄| ≥ n−1/4

)
= lim

n→∞
Pθ

(√
n(X̄ − θ) ≥ n1/4 − n1/2θ

)
+ Pθ

(√
n(X̄ − θ) ≤ −n1/4 − n1/2θ

)
= {1− Φ(−∞)}+Φ(−∞) = 1.

Conditioning on the event {|X̄| ≥ n−1/4},
√
n(µ̂super − θ)

d→ N(0, 1). Then

lim
n→∞

Pθ

(√
n(µ̂super − θ) ≤ t

)
= lim

n→∞
Pθ

(√
n(µ̂super − θ) ≤ t

∣∣ |X̄| ≥ n−1/4
)
Pθ

(
|X̄| ≥ n−1/4

)
= lim

n→∞
Pθ

(√
n(X̄ − θ) ≤ t

∣∣ |X̄| ≥ n−1/4
)
Pθ

(
|X̄| ≥ n−1/4

)
= P(Z ≤ t)

where we used “conditioning on an event with probability 1 is equivalent to not conditioning
on any event” in the last equality.

To summarize, when θ ̸= 0, µ̂super is asymptotically the same random variable as Tn whereas when
θ = 0, µ̂super estimate 0 with 100% precision (no variability at all). Hence Hodges concluded that
his estimator µ̂super was more efficient than R. A. Fisher’s MLE.

The above arguments have one flaw – all the stochastic limit results above are pointwise.
As emphasized in [? ], limit results are only useful if it can provide guidance on finite sample
performance. Pointwise limit results are in general not useful under this principle. To see this,
let’s rephrase these stochastic limit results at θ ̸= 0 in “ε-δ language”.
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• Given any fixed θ ̸= 0, for every ε > 0, there exists a finite integer n(θ, ε) such that for every
n ≥ n(θ, ε),

∣∣Pθ(
√
n(µ̂super − θ) ≤ t)− PZ∼N(0,1)(Z ≤ t)

∣∣ ≤ ε for all t ∈ R. Why we cannot
have a common n(ε) independent of θ such that the above asymptotic normality result holds?
For two different θ1 ̸= θ2, for normal approximation to have the same error ε > 0, we need

Pθi(
√
n(µ̂super − θi) ≤ t)− P(Z ≤ t)

= Pθi

(√
n(X̄ − θi) ≤ t, |X̄| > n−1/4

)
+ Pθi

(
−
√
nθi ≤ t, |X̄| ≤ n−1/4

)
− P(Z ≤ t)

= P
(
Z ≤ t, |n−1/2Z + θi| > n−1/4

)
− P(Z ≤ t) + P

(
|n−1/2Z + θi| ≤ n−1/4

)
1

{
−n1/2θi ≤ t

}
=− P

(
Z ≤ t, |Z + n1/2θi| ≤ n1/4

)
+ P

(
|Z + n1/2θi| ≤ n1/4

)
1

{
−n1/2θi ≤ t

}
to be absolutely bounded by ε. Fix the tolerated error threshold ϵ = 4 × 10−4. Take t = 0,
θ1 = −1/(10.001), then it becomes∣∣Pθ1(

√
n(µ̂super − θ1) ≤ 0)− P(Z ≤ 0)

∣∣
=
∣∣∣−P(Z ≤ 0, |Z + n1/2θ1| ≤ n1/4

)
+ P

(
|Z + n1/2θ1| ≤ n1/4

)
1

{
−n1/2θ1 ≤ 0

}∣∣∣
=
∣∣∣−P(Z ≤ 0, |Z − n1/2/(10.001)| ≤ n1/4

)
+ P

(
|Z − n1/2/(10.001)| ≤ n1/4

)
1

{
n1/2/(10.001) ≤ 0

}∣∣∣
= P

(
Z ≤ 0, |Z − n1/2/(10.001)| ≤ n1/4

)
= P

(
−n1/4 + n1/2/(10.001) ≤ Z ≤ 0

)
,

which is non-increasing with n. Obviously, if we take n = n(ε, θ1) = 104, this error bound
≤ ϵ = 4 × 10−4, where equality holds when n = n(ε, θ1). Now we are going to show that
there exists a θ2 such that at n = 104 and t = 0, normal approximation error is not even
remotely close to ε = 4× 10−4. Then for different unknown parameter θ, we need different
sample sizes to make sure our normal approximation error can be tolerated. Let’s simply take
θ2 = −1/50. Now the approximation error becomes∣∣Pθ2(

√
n(µ̂super − θ2) ≤ 0)− P(Z ≤ 0)

∣∣
= P

(
−n1/4 + n1/2/(50) ≤ Z ≤ 0

)
≈ 0.5.

Remember θ is unknown. Thus even if we collect n = 104 samples, the error of normally
approximating µ̂super may still be way off depending on what the true θ is.

However, the above stochastic limit results, though we have not made explicit, are uniform instead
of pointwise. By our normality assumption, without using CLT, we do not rely on any asymptotics
and conclude that

√
n(X̄ − θ) ∼ N(0, 1) uniformly over any θ ∈ R.

5.0.1 Squared risk of µ̂super

The above analysis can also be done if we use squared risk to compare µ̂super and X̄. Define the

loss as ℓ(θ̂n, θ) := (θ − θ̂n)2. Then Rθ(θ̂n) = Eθ(θ̂n − θ)2. We want to compare Rθ(Sn) and Rθ(X̄).
First, we observe that nRθ(X̄) = nvarθ(X̄) = 1, independent of the unknown parameter θ. Since
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nRθ(X̄) is a constant, it is natural to compare the risk after scaled by n. However, due to hard
thresholding, nRθ(µ̂super) will depend on θ, as we will show below.

nRθ(µ̂super) = nEθ (µ̂super − θ)2 = nEθ

(
X̄ − θ

)2
1{|X̄| > n−1/4}+ nθ2Eθ1{|X̄| ≤ n−1/4}

= nE
[
Z2

n
1{|n−1/2Z + θ| > n−1/4}

]
+ nθ2P{|n−1/2Z + θ| ≤ n−1/4}

= E
[
Z2
1{|Z + n1/2θ| > n1/4}

]
+ nθ2P{|Z + n1/2θ| ≤ n1/4}

= 1− E
[
Z2
1{|Z + n1/2θ| ≤ n1/4}

]
+ nθ2P{|Z + n1/2θ| ≤ n1/4}

= 1 +
{
nθ2 − E

[
Z2
∣∣ {|Z + n1/2θ| ≤ n1/4}

]}
P{|Z + n1/2θ| ≤ n1/4}.

Notice that Z|{a ≤ Z ≤ b} is called a truncated normal distribution and we need to compute its
second moment to finish the above calculation. In particular, we have

E
[
Z2|a ≤ Z ≤ b

]
= 1 +

aϕ(a)− bϕ(b)
Φ(b)− Φ(a)

.

Remark 51. The wikipedia page for truncated normal distribution will be a valuable resource in
the future: truncated normal distribution.

Thus

nRθ(µ̂super) = 1 +

{ (
nθ2 − 1

) [
Φ(n1/4 − n1/2θ)− Φ(−n1/4 − n1/2θ)

]
−(−n1/4 − n1/2θ)ϕ(−n1/4 − n1/2θ) + (n1/4 − n1/2θ)ϕ(n1/4 − n1/2θ)

}
.

Now we can compare nRθ(µ̂super) as a function of θ over different n’s in Figure 2 using the
following R code:

risk <- function (x, n) {

n * (n^(-1) + (x^2 - n^(-1)) * (pnorm(n^(1/4) - n^(1/2) * x) - pnorm(-

n^(1/4) - n^(1/2) * x)) - ((- n^(1/4) - n^(1/2) * x) * dnorm(- n^(

1/4) - n^(1/2) * x) - (n^(1/4) - n^(1/2) * x) * dnorm(n^(1/4) - n^(

1/2) * x)) / n)

}

pdf(’Risk.pdf’)

curve(risk(x, n = 100), from = -1, to = 1, xlab = expression(theta), ylab

= ’Risk’, ylim = c(0, 200), n = 500, lwd = 2)

curve(risk(x, n = 1000), add = TRUE , col = ’red’, n = 500, lwd = 2)

curve(risk(x, n = 10000), add = TRUE , col = ’dodgerblue2’, n = 500, lwd =

2)

curve(risk(x, n = 100000), add = TRUE , col = ’forestgreen ’, n = 500, lwd =

2)

legend(’topright ’, c(’n=100’, ’n=1000’, ’n=10000’, ’n=100000’), text.col =

c(’black ’, ’red’, ’dodgerblue2’, ’forestgreen ’), col = c(’black ’, ’red

’, ’dodgerblue2’, ’forestgreen ’))

dev.off()

In particular, we observe that no matter how large the sample size becomes, there always exists
θ ∈ R such that nRθ(µ̂super) is higher than any pre-specified threshold. Such θ will change with
sample size n.
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Figure 2: nRθ(µ̂super) for different sample sizes n = 100, 1000, 10000, 100000.

Hodges’ phenomenon is also closely related to the problem of statistical inference (building
valid confidence intervals) after model selection/data preprocessing/data dredging/explo-
rative data analysis. See some early papers by Hannes Leeb [? ? ]. Historically, Jianqing
Fan proved that Lasso or other related high-dimensional sparsity-pursuit optimization-based
linear regression techniques have a so-called “oracle variable selection” property, i.e. as sam-
ple size n → ∞, under mild conditions on the covariates, these methods select the true
contributing covariates with probability converging to 1. So the confidence intervals for
those “estimated non-zero regression coefficients” should be valid because they are the “true
non-zero regression coefficients”. Then Leeb and colleagues affirmatively showed that Fan’s
argument for valid inference is far from being useful in practice because his results are only
for point-wise consistency. Valid inference requires uniform consistency. This back-and-forth
foreshadows the direction of selective inference, which is still a hot research topic today.

6 Asymptotic optimality of MLE in parametric models: Years of
development by Lucien Le Cam

In this section, we cover important works that Lucien Le Cam and Jaroslav Hajék have done to
show the optimality of MLE, taking the Hodges’ phenomenon into account.

We have seen that showing hardness is an art for hypothesis testing problems. Asymptotic
optimality of MLE in parametric models was a central topic from 1950’s to 1970’s, and the modern
point of view was established by Lucien Le Cam. Vladimir Spokoiny [? ] took on the challenge
of rewriting Le Cam’s theory in non-asymptotic terms, which are the more dominating style of
modern statistics and machine learning.

1-44



6.1 Proof of Remark 30.3

Recall that for MLE to converge to a limiting normal distribution, we consider the following
quadratic expansion of the log-likelihood ratio:

log

dP⊗n
θ0+

t√
n

dP⊗n
θ0

= t⊤
1√
n

n∑
i=1

ℓ̇(Xi, θ0)−
1

2
t⊤I(θ0)t+ oPθ0

(1)⇝ N

(
−1

2
t⊤I(θ0)t, t

⊤Pθ0 ℓ̇(θ0)ℓ̇(θ0)
⊤t

)

where we denote ℓ(x, θ) as the log-likelihood function at the parameter value θ and ℓ̇(θ) is its partial
derivative with respect to the argument θ. This is the so-called LAN (local asymptotic normal)
expansion of the log-likelihood ratio. A very powerful sufficient condition for LAN expansion to
hold is the following.

Definition 52 (Differentiable in quadratic mean (DQM)). A statistical model (Pθ, θ ∈ Θ) is DQM
at θ0 ∈ Θ if there exists a score ℓ̇(θ) such that the following weak differentiability condition in
squared Hellinger distance holds∫ (√

dPθ0+h −
√
dPθ0 −

1

2
h⊤ℓ̇(θ0)

√
dPθ0

)2

dµ = o
(
∥h∥2

)
. (51)

Here the Fisher information is I(θ0) = Eθ0

[
ℓ̇(θ0)ℓ̇(θ0)

⊤
]
.

Lemma 53. DQM at θ implies the following:

1. Pθ ℓ̇(θ) = 0 and I(θ) = Pθ ℓ̇(θ)ℓ̇(θ)
⊤ exists.

2. DQM at θ implies LAN expansion at θ.

Proof. The first part is trivial. We focus on the second part. We abbreviate dPθ0+
t√
n
as pn and

dPθ0 as p0.

log

dP⊗n
θ0+

t√
n

dP⊗n
θ0

= 2
n∑

i=1

log

√
pn(Xi)√
p0(Xi)

= 2
n∑

i=1

log

(
1 +

{√
pn(Xi)√
p0(Xi)

− 1

})

= 2
n∑

i=1

{√pn(Xi)√
p0(Xi)

− 1

}
− 1

2

{√
pn(Xi)√
p0(Xi)

− 1

}2

+ o

{√
pn(Xi)√
p0(Xi)

− 1

}3
 .

Can you see why the small order term is true? By DQM,

varθ0

[
n∑

i=1

{√
pn(Xi)√
p0(Xi)

− 1

}
− 1

2
√
n

n∑
i=1

t⊤ℓ̇(Xi, θ0)

]

≤ n

∫ (√
dPθ0+h −

√
dPθ0 −

1

2
h⊤ℓ̇(θ0)

√
dPθ0

)2

= no

(
∥t∥2

n

)
= o

(
∥t∥2

)
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and

Eθ0

[
2

n∑
i=1

{√
pn(Xi)√
p0(Xi)

− 1

}]
= 2n

∫
√
pnp0 − 1 = −n

∫
(
√
pn −

√
p0)

2 → −1

4
Pθ0t

⊤[ℓ̇(θ0)ℓ̇(θ0)
⊤]t.

Thus we have

2
n∑

i=1

{√
pn(Xi)√
p0(Xi)

− 1

}
=

1√
n

n∑
i=1

t⊤ℓ̇(Xi, θ0)−
1

4
t⊤Pθ0 [ℓ̇(θ0)ℓ̇(θ0)

⊤]t+ oPθ0
(1).

Next it is easy to see

n∑
i=1

{√
pn(Xi)√
p0(Xi)

− 1

}2

→Pθ0

1

4
t⊤Pθ0 [ℓ̇(θ0)ℓ̇(θ0)

⊤]t

and finally

log

dP⊗n
θ0+

t√
n

dP⊗n
θ0

=
1√
n

n∑
i=1

t⊤ℓ̇(Xi, θ0)−
1

2
t⊤Pθ0 [ℓ̇(θ0)ℓ̇(θ0)

⊤]t+ oPθ0
(1).

Remark 54. We will see an instance how DQM is used in the paper [? ] presentation.

6.2 Convolution theorem and Local Asymptotic Minimax (LAM) theorem

Lucien Le Cam spent most of his career trying to develop a general theory for the optimality of
MLE by taking the Hodges’ estimator into account.

Le Cam’s first attempt: around 1953, in his PhD thesis [? ], Le Cam showed that Hodges’
estimator is super-efficient (more efficient than MLE) only on a set of Lebesgue measure zero.

Le Cam’s second attempt: restrict only to “(locally) regular estimators Tn”.

Definition 55 ((Locally) regular estimators). (Locally) regular estimators Tn of a parameter
ψ(θ0), θ0 ∈ Θ ⊂ Rd satisfy the following criterion:

√
n

{
Tn − ψ

(
θ0 +

h√
n

)}
⇝ L(θ0)

where L(θ0) is some tight probability distribution that depends on θ0, and the convergence is with
respect to every law P⊗n

θ0+
h√
n

for any h ∈ Rd.

Remark 56. Regular estimators are very restrictive – the asymptotic law of which under local
Pitman’s alternative should be the same. You can check that Hodges’ estimator is not regular.
Similarly, Lasso estimator for linear model regression coefficients (β in y = Xβ + noise) is also
not regular. To connect with our previous discussion, this is why standard confidence intervals
associated with Lasso regression coefficients do not have the correct coverage (essentially a Hodges’
estimator). To obtain valid inference, one needs to restore the “regularity” of Lasso estimator
by the so-called debiased Lasso (which is correcting for the first-order influence function of the
coefficients β).
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Theorem 57 (Hajék-Le Cam convolution theorem). Assuming the model is DQM. For regular
estimator Tn, there exists some probability measure M(θ) such that

L(θ) = N
(
0, ψ̇(θ)⊤I(θ)−1ψ̇(θ)

)
∗M(θ)

where ∗ denotes the convolution between the two distributions.

The proof of the convolution theorem relies on four lemmas by Le Cam (Le Cam’s first lemma
to Le Cam’s fourth lemma; but the most important one is Le Cam’s third lemma). Due to
time limitation, I am leaning toward skipping the proof. You may find a quick introduction
in Jon Wellner’s notes or David Pollard’s notes or simply read Chapters 6, 8.5 and 8.6 of [?
]. Of course, you can also read Le Cam’s very own treatise [? ]. I’ll give a brief sketch of how
Le Cam’s program is applied in general: Le Cam’s program is trying to show the following:
if Xn ⇝Pn X then under a contiguous measure Qn (local alternative), Xn ⇝Pn X

′.

1. Under DQM, which implies LAN, Le Cam’s second lemma says

Lemma 58 (Le Cam’s second lemma). Under DQM, we have

logLn ⇝Pn N(−σ
2

2
, σ2).

where Ln :=
dQn

dPn
.

2. Show contiguity (asymptotic absolutely continuity) of the local alternative law Qn

relative to the null law Pn (denoted as Qn ◁ Pn), possibly by Le Cam’s first lemma
(equivalent characterizations of contiguity):

Lemma 59 (Le Cam’s first lemma). If logLn ⇝Pn logL = N(−σ2

2 , σ
2), then Qn ◁Pn.

3. Le Cam’s third lemma:

Lemma 60 (Le Cam’s third lemma). If Qn ◁ Pn(
Xn, log

dQn

dPn

)
⇝Pn (X,V ) ,

then the probability measure L(B) := E [1{X ∈ B}V ] (check on your own why this is
a probability measure), then Xn ⇝Qn L.

4. People often use the following corollary of Le Cam’s third lemma: If(
Xn, log

dQn

dPn

)
⇝Pn N

((
µ
−1

2σ
2

)
,

(
Σ τ
τ⊤ σ2

))
then

Xn ⇝Qn N(µ+ τ,Σ).

A recent important paper on independence testing by Fang Han uses this machinery but
it is a very standard application (i.e. not in modern high-dimensional or non-parametric
settings).
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Le Cam’s third attempt: Local asymptotic minimax theorem.

Theorem 61 (Local Asymptotic Minimax (LAM) Theorem). Assuming the model is DQM. For
symmetric and convex loss function ℓ8, then

inf
Tn

lim
c→∞

lim inf
n→∞

sup
∥t∥≤c

Eθ+ t√
n

[
ℓ

(√
n

{
Tn − ψ

(
θ +

t√
n

)})]
≥ E[ℓ(Z)]

where Z ∼ N(0, ψ̇(θ)⊤I(θ)−1ψ̇(θ)).

The proof of LAM also relies on Le Cam’s four lemmata. But we do not repeat their statements
here.

Proof sketch. The high-level strategy is as follows: DQM ⇒ LAN expansion ⇒ weak convergence
of the likelihood ratio to a Gaussian limiting model⇒ Under the Gaussian limiting model, the risk
of MLE cannot be improved in the minimax sense (Anderson lemma; see Lemma 64) by taking a
prior N(0,Γ) over t and let Γ→∞ in a suitable sense.

The proof technique that we present here is quite useful in many other settings. It is based on
“exponential tilting” and “truncating the likelihood ratio statistic”. We may see such technique
again when we talk about low-degree polynomial methods in “computational-statistical gap” part.

Without loss of generality, we take θ0 = 0, ψ = id and obliviate all their appearances in our
notation. We denote I(θ)−1 at θ = 0 as Σ. For convenience, we denote Xn = (X1, · · · , Xn)

⊤.
Step 1: By LAN and Le Cam’s third lemma, we realize that the key part of the likelihood

expansion is Zn ≡ Zn(Xn) :=
1√
n

∑n
i=1Σℓ̇(Xi) and Zn ⇝ N(t,Σ) under Pt/

√
n.

Step 2: Let us try to lower bound the risk directly: denote the law of data given the parameter
t/
√
n as Pt/

√
n,n and consider a truncated Gaussian prior Πc

Γ[t] = N(0,Γ)[t]1{∥t∥ ≤ c} of t so
Π∞

Γ = N(0,Γ). With slight abuse of notation, we denote the marginal of Xn under the prior Πc
Γ

as PX,n and the posterior of t as Πc
Γ[t|Xn].

sup
∥t∥≤c

E t√
n

[
ℓ

(√
n

{
Tn −

t√
n

})]
≥
∫ ∫

ℓ

(√
n

{
Tn −

t√
n

})
dPt/

√
n,n(Xn)dΠ

c
Γ[t]

≥
∫

EΠc
Γ[·|Xn]

ℓ(
√
nTn − t)dPX,n(Xn)

≥
∫

inf
t̂
EΠc

Γ[·|Xn]
ℓ(t̂− t)dPX,n(Xn).

Step 3: Now let us pause for a bit and think about how far we are away from the final statement.
In the above lower bound, the joint measure is dG0(t,Xn) := dPt/

√
n,n(Xn)dΠ

c
Γ[t] whereas our

target law is dG∞(t,Xn) := dN(t,Σ)[Zn]dΠ
∞
Γ [t]. One step at a time. Now, exponential tilting

(essentially a change of measure).

dG0(t,Xn) := dPt/
√
n,n(Xn)dΠ

c
Γ[t]⇒

8In most textbooks, bowl-shaped loss is considered – which is symmetric and quasi-convex.
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dG1(t,Xn) := exp

{
−1

2
(Zn − t)⊤Σ−1(Zn − t)

}
exp−1

{
−1

2
Z⊤
n Σ−1Zn

}
dP0,n(Xn)︸ ︷︷ ︸

likelihood ratio between the null models:
finite sample vs. asymptotics

dΠc
Γ[t]

The tilted measure is close to the initial measure simply by LAN.
Step 4: dG1(t,Xn) is still different from dG∞(t,Xn). What to do? Change the measure slightly

again!

dG1(t,Xn)⇒ dG2(t,Xn) := exp

{
−1

2
(Zn − t)⊤Σ−1(Zn − t)

}
exp−1

{
−1

2
Z⊤
n Σ−1Zn

}
dP0,n(Xn)︸ ︷︷ ︸

=:dQt,n(Xn)

dΠ∞
Γ [t]

which is close to the target measure dG∞.
Now we need to show G0 ≈ G1 ≈ G2 ≈ G∞. G1 vs. G2 seems to be the simplest: we only let

c→∞:

∥G1 −G2∥TV

≤
∫
|dQt,n(Xn) (dΠ

c
Γ(t)− dΠ∞

Γ (t)) |

≤
∫

sup
t
|dQt,n(Xn)|

∫
|dΠc

Γ(t)− dΠ∞
Γ (t)|

≡
∫

exp

{
1

2
Z⊤
n Σ−1Zn

}
dP0,n(Xn)∥Πc

Γ −Π∞
Γ ∥TV.

Darn! How to bound
∫
exp

{
1
2Z

⊤
n Σ−1Zn

}
dP0,n(Xn)? Now comes the “truncated likelihood ratio”

trick.
Step 5: Define a new measure P̄t/

√
n,n by truncating Pt/

√
n,n within the

box := {Xn : ∥Zn(Xn)∥ ≤ b}.

For any truncation error threshold ϵ > 0, we can choose b appropriately so that the difference
between P̄t/

√
n,n and Pt/

√
n,n is bounded by ϵ. The corresponding ∥Ḡ1− Ḡ2∥TV can be easily shown

to be small. Between dḠ0 and dḠ1, we can show, by LAN expansion,

lim inf
n

sup
t:∥t∥≤C

∥Qt,n − P̄t/
√
n,n∥TV

= lim inf
n

sup
t:∥t∥≤C

∫
box

∣∣∣∣∣dQ̄t,n

dP̄0,n
−

dP̄t/
√
n,n

dP̄0,n

∣∣∣∣∣ dP̄0,n

= lim inf
n

sup
t:∥t∥≤C

∫
box

∣∣∣∣exp{t⊤Σ−1Zn −
1

2
t⊤Σ−1t

}(
1− eoP0,n (∥t∥)

)∣∣∣∣dP̄0,n → 0.

Finally, we go back to the risk lower bound we have left for a while. Denote NΣ,Γ as the
posterior of the likelihood Zn ∼ N(t,Σ) and the prior N(0,Γ).∫

inf
t̂
EΠc

Γ[·|Xn]
ℓ(t̂− t)dPX,n(Xn)
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=

∫
inf
t̂
ENΣ,Γ[·|Zn]ℓ(t̂− t) + EΠc

Γ[·|Xn]
ℓ(t̂− t)− ENΣ,Γ[·|Zn]ℓ(t̂− t)dPX,n(Xn)

≥
∫

inf
t̂
ENΣ,Γ[·|Zn]ℓ(t̂− t)dPX,n(Xn)− sup

t̂,t

ℓ(t̂− t)
∫
∥NΣ,Γ(·|Zn)−Πc

Γ[·|Xn]∥TVdPX,n(Xn).

The first term is handled by Anderson lemma. We need to show the second term can be made
smaller than any given threshold ε > 0. Denote PX,n,2 as the marginal distribution of Xn under
the law dG2 ∫

∥NΣ,Γ(·|Zn)−Πc
Γ[·|Xn]∥TVdPX,n(Xn)

≤
∫
∥NΣ,Γ(·|Zn)−Πc

Γ[·|Xn]∥TV (dPX,n(Xn) + dPX,n,2(Xn))

?
≤ 4∥G0 −G2∥TV.

Remark 62. Proof of the final “?”.

Lemma 63.∫
∥M1(·|Xn)−M2(·|Xn)∥TV(dµ1(Xn) + dµ2(Xn)) ≤ 4∥ M1 −M2︸ ︷︷ ︸

Joint measures

∥TV.

Proof. Denote dM1(·|Xn) = a1, dµ1(Xn) = b1, dM2(·|Xn) = a2, dµ2(Xn) = b2.
Then ∫ ∫

|a1 − a2|(b1 + b2)

=

∫ ∫
|a1 − a2|b1 + |a1 − a2|b2

=

∫ ∫
|a1b1 − a2b2 + a2(b2 − b1)|+ |a1b1 − a2b2 + a1(b2 − b1)|

≤
∫ ∫

2|a1b1 − a2b2|+ (a1 + a2)|b2 − b1|.

Thus ∫
∥M1(·|Xn)−M2(·|Xn)∥TV(dµ1(Xn) + dµ2(Xn))

≤
∫

2|dµ1(Xn))dM1(h|Xn))− dµ2(Xn)dM2(h|Xn))|

+

∫
{dM1(h|Xn) + dM2(h|Xn)} |dµ1(Xn)− dµ2(Xn)|

≤ 2∥M1 −M2∥TV + 2∥µ1 − µ2∥TV.

Finally ∫
|dµ1 − dµ2| =

∫
Xn

∣∣∣∣∫
h
dM1(h|Xn)− dM2(h|Xn)

∣∣∣∣
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≤
∫
Xn

∫
h
|dM1 − dM2| ≤ ∥M1 −M2∥TV.

Lemma 64 (Anderson lemma). For statistical model X ∼ N(θ,Σ), symmetric and convex loss
function ℓ,

inf
θ̂n

sup
θ∈Rd

Eθ

[
ℓ
(
θ̂n − θ

)]
≥ E [ℓ(Z)] (52)

where Z ∼ N(0,Σ).

Bernstein-von Mises theorem is the Bayesian analogues of the theory of MLE. We state the
theorem below without proof.

Theorem 65 (Bernstein-von Mises theorem). For a probability model (Pθ, θ ∈ Θ) that is
DQM at θ0 and I(θ0) is symmetric and positive definite. If the prior Πθ is absolutely con-
tinuous around a neighborhood of θ0 and has non-zero density at θ0, then the posterior
distribution θ|X1, · · · , Xn converges weakly to N(θ0, I(θ0)

−1).

We may come back to this theorem if we have time to cover non-parametric Bayesian statis-
tics.

In this lecture, I deliberately try to avoid using the name “statistical experiments”, which
is strongly advocated by mathematical statisticians following Lucien Le Cam’s path. This
is only because I do not have enough time to tell you what is “statistical experiments” and
why “statistical experiments” is an important concept.

Finally, let us return to the start of this chapter: van Tree’s inequality. After you have learnt
about all those results on MLE, how would you interpret van Tree’s inequality?
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