
Advanced mathematical statistics August 30, 2025

Part II. Information Theoretic Aspects of Statistics

Instructor: Lin Liu

1 Key Concepts and Philosophies in Statistics

Statistics can be roughly categorized into the following paradigms:

1. Start from a concrete scientific question abstracted as a parameter θ of some statistical model
{Pθ, θ ∈ Θ}, collect relevant data D, and try to study the following aspects of θ:

• hypothesis testing on θ: e.g. null hypothesis H0 : θ = 0 or H0 : θ ∈ Θ0

find a measurable function of the data and a nominal level α (maximum type-I error
allowed), Tα(D) ∈ {0, 1} (a nominal level α test statistic for H0), such that

sup
θ∈H0

Pθ(Tα(D) = 1) ≤ α (1)

If (1) is satisfied, then the nominal level α test statistic Tα(D) is said to be (uniformly)
valid. If we find Tα(D) = 1 for the given data D, then we say we reject H0 at level α.

If one also has an alternative hypothesis Ha : θ ∈ Θa, then one at least hopes that under
the constraint that (1) is satisfied, the following also holds for some β ∈ [0, 1] (best if
β = 1)

inf
θ∈Ha

Pθ(Tα(D) = 1) ≥ β. (2)

When β = 1, then a valid test Tα(D) is said to be (uniformly) powerful; when β = 0,
then a valid test Tα(D) is said to be powerless (in worst case); when β ∈ (0, 1), then
a valid test Tα(D) is said to have non-trivial power. If the power of a valid test Tα(D)
cannot be improved, then we say Tα(D) is a uniformly optimal valid test.

• estimation of θ: learn the value of θ from data
find a measurable function of the data T (D) (estimator) such that ∥T (D) − θ∥ is close
to 0. If we index T (D) as a sequence of estimators Tn(D) where n could be the sample
size of D, then if ∥Tn(D)− θ∥ → 0 in Pθ-probability as n→ ∞, then Tn(D) is said to be
a consistent estimator of θ. If the following stronger condition holds: for every ϵ > 0,

sup
θ∈Θ

Pθ(∥Tn(D)− θ∥ > ϵ) → 0 as n→ ∞ (3)

then Tn(D) is said to be a uniformly consistent estimator of θ over the class Θ. Con-
sistency does not have practical relevance but uniform consistency does, which is one of
the common theme that we will emphasize throughout this semester.

• uncertainty quantification (aka statistical inference) of θ: learn a spectrum of values of θ
that incorporates the uncertainty in the data (e.g. noise, measurement error, systematic
bias, contamination, adversarial attack, or even intrinsic quantum stochasticity)
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find a set of measurable functions of the data and a nominal confidence level α, {T (D)}α
(nominal 1− α confidence set), such that

Pθ [θ ∈ {T (D)}α] ≥ 1− α (4)

and the Lebesgue measure or any appropriate measure of the volume of {T (D)}α is as
small as possible. Any nominal 1−α confidence set {T (D)}α satisfying (4) is said to be
a (point-wise) valid nominal 1− α confidence set. If

inf
θ∈Θ

Pθ [θ ∈ {T (D)}α] ≥ 1− α (5)

then {T (D)}α is said to be an honest (uniformly valid) nominal 1− α confidence set of
θ over the class Θ.

Folklore: hypothesis testing ≺ estimation ≺ statistical inference, where the partial ordering
≺ means increasing level of difficulty. This is a philosophy for viewing statistical problems,
not an actual mathematical theorem.

2. The above paradigm works well in classical scientific inquiry, but not so much in modern
big data era, when the scientific question of interest can be quite nebulous, or even worse,
does not even exist before the data is collected. In this case, the above problems are still
of interest, but the requirements are much more difficult to satisfy, as one needs to take the
data-exploration step into account. Popular statistical problems include large-scale multiple
hypothesis testings, statistical inference validity after model selection/data dredging. For
simplifying our terminology’s sake, we categorize this type of problems as “model selection”,
which is orthogonal to, but at the same time related to, hypothesis testing, estimation, and
statistical inference.

Before large-scale computing becomes routine, mathematical theorems and the philosophy be-
hind the theorems are the major topics statisticians care about. We will also mention them for
pedagogical purposes.

1.1 Bayesian vs. Frequentists [vs. Fiducialists] (BFFs)

Recall from above, we define honest uncertainty quantification/confidence sets as the long-run
behavior of a statistical procedure. Related to frequentists’ confidence sets is fiducial inference,
which was one of RA Fisher’s major contribution and gradually got lost in history because of its
numerous issues. For more detail, you can look up in [? ]. But there is a recent surge of interest
in fiducial inference due to the assumption-free pursuit in statistics.

In contrast, Bayesian inference treats θ as random and starts with a prior probability measure
dΠ(θ) on θ. Conditioning on θ = θ′, the data D is a random drawn from a probabilistic model
dP(D|θ). Then we “update” our belief on θ after seeing the data by Bayes’ rule:

Π(θ ∈ B|D) =

∫
B dP(D|θ)dΠ(θ)∫
Θ dP(D|θ)dΠ(θ)

where B ∈ B and B is a σ-field on Θ.
When we attach sample size n to the prior and the likelihood (and the data), in Bayesian

inference, consistency “becomes” posterior consistency and confidence sets “becomes” credible sets.
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Definition 1 (Posterior consistency). The posterior distribution Πn(θ ∈ B|Dn) is said to be

consistent at θ0 ∈ Θ if Πn(θ ∈ N c|Dn) → 0 in P(n)
θ0

-probability, as n → ∞, for every neighborhood
N of θ0. Uniform posterior consistency is then obvious to define.

Definition 2 (Bayesian credible sets). A nominal 1−α Bayesian credible set Cα(Dn) for θ ∈ Θ is
a subset of Θ such that

Πn(θ ∈ Cα(Dn)|Dn) ≥ 1− α. (6)

But as frequentists, we would like to establish the frequentist property of a Bayesian credible set,
which we termed as honest Bayesian credible set (Bayesians generally do not like the name)

inf
θ∈Θ

Πn(θ ∈ Cα(Dn)) ≥ 1− α. (7)

We may come back to this in the end of this semester.

Finally, there is an extremely small group of statisticians named Dempster-Shafer (Arthur
Dempster and Glenn Shafer) school. They believe in the “belief function” and “plausibility func-
tion” and operate with Dempster-Shafer calculus [? ], arguably a more systematic way of evaluating
the strength of evidence from data.

Definition 3 (Belief function and Plausibility function [? ]). For any subset A ⊂ Ω of a probability
space (Ω,F ,P), where P ∈ P

Bel(A) = inf
P∈P

P(A),

Pl(A) = sup
P∈P

P(A).
(8)

Belief function and Choquet capacity [? ] are sometimes used interchangeably. Interestingly,
Dempster is one of the most famous statisticians in history because of his work on EM algorithm
with Donald B. Rubin and Nan Laird. But the belief function, though his signature invention, is
not well received by his fellow statisticians in general. It has, however, received a huge attention
in artificial intelligence (the old school AI like expert systems, not today’s AI based exclusively on
large-scale optimization and deep neural networks). Few statistics departments in the world cover
Dempster-Shafer calculus in any class nowadays.

In terms of practical relevance, confidence sets from frequentists and credible sets from Bayesian
are still the most widely used uncertainty quantification methods.

Remark 4. Debates among BFFs still go on till today. There is a BFF conference held every
year since 2014. Chinese statisticians in general do not show much interest in studying statistical
philosophy. One of the few exceptions is Xiao-Li Meng (and his pupils), who is famous for writing
statistics research papers in an artistic style: e.g. [? ? ? ? ].
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2 Statistical estimation: Decision- and information-theoretic per-
spectives

Since most of you are familiar with sufficient statistic, I only provide a brief summary of the key
points on sufficiency, completeness, and complete sufficiency.

2.1 Sufficient statistic vs. Information theory

Definition 5 (Sufficient statistic (SS), minimal sufficient statistic (MSS)). A statistic T (X) is said
to be sufficient for θ is the law of X|T (X) does not depend on θ. A minimal sufficient statistic
T ∗(X) is a sufficient statistic that can be written as a function of any other sufficient statistic.

You are expected to be familiar with the following theorems on sufficient statistic: First, Fisher-
Neyman factorization is a procedure of finding sufficient statistics:

Theorem 6 (Neyman-Fisher factorization). T (X) sufficient for θ ⇔ fX(x; θ) = g(T (x); θ)h(x) for
some functions g(·, θ) depending on X only through T (X) and h free of θ.

The proof of the above theorem can be found in standard statistical textbooks, hence omitted.
Sufficient condition for an MSS

Theorem 7. T (X) is sufficient for θ. T is an MSS if the likelihood ratio fX(x;θ)
fX(x′;θ) is free of θ for

any x′ ̸= x implies T (x) = T (x′).

Proof. Let T ′ be any other SS. If T ′(x) = T ′(x′) ⇒ T (x) = T (x′) for any x ̸= x′, then T = g(T ′).
We are done. So we need to show T ′(x) = T ′(x′) ⇒ T (x) = T (x′). Take x ̸= x′, but T ′(x) = T ′(x′),
then the likelihood ratio

fX(x; θ)

fX(x′; θ)
=

g(T ′(x); θ)h(x)

g(T ′(x′); θ)h(x′)
=
h(x)

h(x′)

is free of θ. By the assumption in the theorem, this implies T (x) = T (x′), which means we establish
the logical chain:

T ′(x) = T ′(x′) ⇒ T (x) = T (x′).

Sufficiency is closely related to information theoretic aspect of statistics. First though, we recall
the following famous Data Processing Inequality (DPI)

Lemma 8 (DPI). For data processing depicted in Figure 1, we have

I(θ;T (X)) ≤ I(θ;X)

that is, data processing diminishes the information on the source θ. Here I(X;Y ) is the mutual
information (MI) between two random variables X and Y , defined as

I(X;Y ) = H(X)− H(X|Y ) (9)

where H(X) = −
∫
log dP(x)dP(x) is the Shannon entropy of X, and H(X|Y ) is the conditional

Shannon entropy of X|Y , which is a deterministic quantity and defined as

H(X|Y ) =

∫
H(X|Y = y)dP(y). (10)
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Note that H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y ). Similarly one can define the conditional
MI between X and Y conditional on Z as

I(X;Y |Z) = H(X|Z)− H(X|(Y,Z)) (11)

If X ⊥⊥ Y then I(X;Y ) = 0; if X ⊥⊥ Y |Z then I(X;Y |Z) = 0.

Proof.

I(θ; (X,T (X))) = H(θ)− H(θ|(X,T (X)))

= H(θ)− H(θ|T (X)) + H(θ|T (X))− H(θ|(X,T (X)))

= I(θ;T (X)) + I(θ;X|T (X))

By symmetry = I(θ;X) + I(θ;T (X)|X).

By Figure 1, we immediately have I(θ;T (X)|X) = 0 so

I(θ;X) = I(θ;T (X)) + I(θ;X|T (X)) ≥ I(θ;T (X))

where in the last inequality we use the fact that mutual information is non-negative, which can be
proved by Jensen’s inequality.

Data processing gives us the following Markov chain:

θ Data T

Figure 1: Markov chain of data processing

If T happens to be a sufficient statistic of θ, then a part of the above Markov chain can be
reversed:

θ T Data

Figure 2: Markov chain under sufficiency

By DPI, we have, when T (X) is a sufficient statistic, I(θ;X) = I(θ;T (X)). Minimal sufficient
statistic T ∗ is much clearer to us if we define it in information-theoretic parlance:

T ∗ := argmin
T̃
I(X; T̃ (X)) s.t. I(θ;X) = I(θ; T̃ (X)).

In words, a minimal sufficient statistic is the sufficient statistic that is the “furthest” from the data
X.

Definition 9. T (X) is said to be a complete statistic for a family distribution indexed by the
parameter θ if it is impossible to construct a non-trivial unbiased estimator of 0 from T (X), i.e.
Eθ(h(T (X))) = 0 ∀ θ =⇒ h(T ) = 0 w.p.1.

Theorem 10. Any CSS is also minimal as long as ∃ at least one MSS.
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Proof. Let T be a CSS, M be a MSS and h(T ) = Eθ(T |M) − T . We can show (a) h(T ) is free of
θ; (b) h(T ) is a function of T ; and (c) h(T ) is an unbiased estimator of 0.

From (a) (b) (c) and the definition of CSS, h(T ) = 0 w.p.1 i.e. Eθ(T |M) = T w.p.1 =⇒ T is
a function of M on a set of measure 1 =⇒ T is a function of every other SS =⇒ T is a MSS

For exponential family distributions, fX(x; η) = exp {ηT (x)− ψ(η)}h(x) then T (X) is CSS for
η. CSS is useful for constructing not-so-bad estimators.

Theorem 11 (Rao-Blackwell). T̂ unbiased for T (θ). S is any SS. Take ϕ(S) = Eθ(T̂ |S). Then
(1) ϕ(S) is also unbiased for T (θ) and (2) varθ(ϕ(S)) ≤ varθ(T̂ ) for any θ.

The proof is trivial. But I want to remark that since S is SS, conditioning on S the law of T̂
does not depend on θ. Thus ϕ(S) is a statistic (i.e. a function of the data).

With Rao-Blackwell, one can show

Theorem 12 (Lehmann-Scheffé). An unbiased estimator of T (θ) that is a function of a CSS is the
UMVUE of T (θ) (uniformly minimum variance unbiased estimator).

Proof. Take T, T ′ two unbiased estimators of T (θ). S is CSS for θ. ϕ(S) = Eθ(T |S) ϕ′(S) =
Eθ(T

′|S). Rao-Blackwell: varθ(ϕ(S)) ≤ varθ(T ) varθ(ϕ
′(S)) ≤ varθ(T

′) h(S) = ϕ(S) − ϕ′(S).
Then Eθ(h(S)) = Eθ(ϕ(S))− Eθ(ϕ

′(S)) = 0 =⇒ h(S) = 0 w.p.1 =⇒ ϕ(S) = ϕ′(S) w.p.1. If T is
a function of S and T ′ has smaller variance, then varθ(ϕ

′(S)) ≤ varθ(T
′) ≤ varθ(T ) = varθ(ϕ(S)).

This is a contradiction.(Because ϕ(S) = ϕ′(S)w.p.1.) Thus ϕ(S) is a UMVUE.

Remark 13. X ∼ Pois(λ), g(λ) = e−2λ, T (X) = (−1)X is unbiased for g(λ). This is because

Eλ(T (X)) = Eλ((−1)X) =
∞∑
x=0

e−λ(−λ)x

x! = e−λ
∞∑
x=0

(−λ)x

x! = e−λe−λ = g(λ). And X is a CSS =⇒

T (X) is a UMVUE of e−2λ. But T (X) = 1 when X is even, -1 when X is odd. The key reason is
that ”unbiasedness” is too restrictive!

Definition 14 (Ancillary statistic (AS)). A statistic A(X) is said to be ancillary for θ if the law
of A(X) does not depend on θ.

Theorem 15 (Basu’s theorem). If T and A are CSS and AS for θ, then T ⊥⊥ A.

Proof. For any measurable set B, define hB(T ) := Pθ(A ∈ B|T ) − Pθ(A ∈ B) is a function of T
not depending on θ by ancillarity of A and sufficiency of T . T is complete so EθhB(T ) = 0 implies
hB(T ) ≡ 0 so A ⊥⊥ T .

Do not confuse ancillary statistics with “pivotal quantities”. A pivotal quantity is a function of
the data and the unknown parameters such that its distribution does not depend on the underlying
distribution. So an ancillary statistic is a pivotal quantity but without depending on the unknown
parameter.

Both ancillary statistics and pivotal quantities can be used to construct confidence intervals.

Example 1. X1, · · · , Xn
iid∼ N(µ, σ2) then X̄−µ

sn/
√
n
∼ tn−1, so it is a pivotal quantity and we can

construct a valid (1 − α) CI for µ by inverting the quantile of the Student’s T distribution with
n− 1 degree of freedom. If normality is not assumed, we can use CLT and Slutsky theorem to show
it is an asymptotic pivotal quantity and we can construct an asymptotically valid (1− α) CI for µ
by inverting the quantile of the standard normal.
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2.2 Distribution-free statistics

2.2.1 Conformal inference

A related modern statistical concept is conformal inference [? ? ] and inference after model
selection [? ? ? ].

First let’s consider the simple setting. Y1, · · · , Yn, Yn+1 ∼ P and we want to build a confidence
interval for the unseen Yn+1. and the only assumption we make is that the joint distribution
Y1, · · · , Yn+1 is exchangeable:

P(Y1, · · · , Yn+1) = P(Yσ(1), · · · , Yσ(n+1))

for any permutation σ({1, · · · , n+ 1}) = {σ(1), · · · , σ(n+ 1)}.
Now we instead consider the regression setup. Given n i.i.d. pairs (Xi, Yi), divide the data into

two disjoint groups, with sizes n1 and n2. Use sample 1 D1 to fit deep neural nets and obtain f̂1.
Denote the new data point as (X ′, Y ′). We would like to construct a prediction interval P̂Iα around
f̂1(X

′) such that with probability at least 1 − α Y ′ ∈ P̂Iα. Now we can use sample 2 D2 because
D1 ⊥⊥ D2 ⊥⊥ (X ′, Y ′). How to make no assumptions except i.i.d./exchangeability? The vanilla
conformal inference goes as follows: Compute the residuals Ei = |Yi−f̂1(Xi)| for every (Xi, Yi) ∈ D2.
Then find out the order statistics E(⌈(1−α)(n2+1)⌉). Finally, define P̂I = (f̂1(X

′) + E(⌈(1−α)(n2+1)⌉)).
One can easily show

P
(
Y ′ ∈ P̂I

)
= P

(
Y ′ − f̂1(X

′) ≤ E(⌈(1−α)(n2+1)⌉)

)
≥ 1− α.

If the residuals {Ei}, i = 1, · · · , n2 have a continuous distribution (so no ties), and n1 = n2 = n/2,
one can easily show [? ]

P
(
Y ′ ∈ P̂I

)
= P

(
Y ′ − f̂1(X

′) ≤ E(⌈(1−α)(n2+1)⌉)

)
≤ 1− α+

1

n/2 + 1

2.2.2 Rank-based statistic

But there is one caveat about rank – it is tricky to generalize to multivariate settings. But it is
still possible. Can you think of some reasonable strategies?

2.2.3 Permutation-based statistic

Consider X1, · · · , Xn ∼ P and Y1, · · · , Ym ∼ Q both are exchangeable. We want to test H0 : P = Q.
Let Z = (Z1, · · · , ZN ) = (X1, · · · , Xn, Y1, · · · , Ym). Under H0, Z is exchangeable. Denote the
permutation group ΠN over {1, · · · , N}. Then Z ∼ π ◦ Z for any π ∈ ΠN .

We want to construct a test Tα(Z) ∈ {0, 1} such that under H0, the nominal type-I error is
guaranteed: PH0(Tα(Z) = 1) ≤ α. To get a test, one needs a test statistic Sn,m = s(Z). Denote
Sπ
n,m = s(π ◦ Z) for π ∈ ΠN . Under H0, S

π
n,m are identically distributed over all π ∈ ΠN and

there are N ! many of them. Say we did the permutation B times with B < N ! (including the

unpermuted one) and label them as Sπ0
n,m ≡ Sn,m, S

π1
n,m, · · · , S

πB−1
n,m . Take k = ⌈(1−α)B⌉. Let S(k)

n,m

be the k-th smallest among Sπ0
n,m ≡ Sn,m, S

π1
n,m, · · · , S

πB−1
n,m . Then we consider the following test:

Tα =

{
0 Sn,m ≤ S

(k)
n,m

1 Sn,m > S
(k)
n,m
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It is easy to see that

PH0(Tα = 1) ≤ α.

Now think about the following problem: what if we instead testing H0 : EX = EY ? Will
permutation test still have the desired type-I error?

2.3 Decision theoretic aspects of statistics

From a societal perspective, statistical analysis is an interplay/game played between an exper-
imenter/statistician and the nature (or nowadays even some adversary). This is the viewpoint
taken by David Blackwell [? ]1 and Lucien Le Cam [? ].

Blackwell and Le Cam begins with the following setup:
Given a set of data D, we have a scientific problem of interest abstracted as a parameter θ,

and if you construct from D an estimator θ̂ of θ, how do you tell if it is a good estimator? One
approach is through decision theory by introducing a loss function ℓ and its associated risk R. To
be more precise

Definition 16. Let T̂ : D → Ŷ be a decision procedure. The parameter of interest is actually
T (θ) where T : Θ → Y. In the most general form, Ŷ and Y can be different. Given a loss function
ℓ : Y × Ŷ : R+, we define the risk of T̂ at parameter θ as

Rθ(T̂ ) = Eθℓ(T̂ , T (θ)) (12)

Remark 17. T̂ can be a randomized algorithm e.g. T̂ (D, U) where U is a random variable in-
dependent of the data. Randomized algorithm is extremely useful – it often can improve the
computational speed of an algorithm by orders of magnitude by trading-off some accuracy (though
still accurate with high probability). Jelani Nelson, James Lee, David Woodruff, Ryan O’Donnell
and Edgar Dobriban (the only statistician in this list) are the people you should search for if
interested in such problems.

With the definition of loss function and its associated risk, we can start to compare estimators.
The very first criterion that statisticians came up with is admissibility of a decision procedure.

Definition 18. T̂ is said to be inadmissible if ∃ T̂ ′, such that Rθ(T̂
′) ≤ Rθ(T̂ ) ∀θ ∈ Θ and for

some θ0 ∈ Θ, Rθ0(T̂
′) < Rθ0(T̂ ).

Example 2. This is not a perfect criterion. Consider X ∼ Bernoulli(p). Take T̂ = 0.5, it has 0
risk at p = 0.5 but lousy at other p’s. It is immediate to see that for any other T̂ ′, if we require
Rp(T̂

′) ≤ Rp(T̂ ) at all p, then it must hold that R0.5(T̂
′) ≤ R0.5(T̂ ) = 0. But R0.5(T̂

′) ≡ 0 if and

only if T̂ ′ ≡ 0.5.

For more details on admissibility, you should read “Theory of Point Estimation” by Erich
Lehmann and George Casella [? ], which contains all the details on this topic.

Other reasonable approaches of comparing estimator include the following:

1David Blackwell was an expert in probability theory, information theory, game theory and statistics. He was the
first Black member elected into the American Academy of Arts and Sciences.
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1. Restrict the type of estimators (e.g. linear estimator, quadratic estimator, equivariant esti-
mator, rotation-invariant estimator [? ], etc.)

2. Average-case risk: First define the posterior risk

Rπ(T̂ ) = Eθ∼πRθ(T̂ )

With that, define the Bayes risk as R∗
π = inf

T̃
Rπ(T̃ ). We may also define the worst-case

Bayes risk: R∗
B = supπ R

∗
π.

3. Worst-case risk (Minimax)
R∗ = inf

T̃
sup
θ∈Θ

Rθ(T̃ ).

We will study minimax risk frequently during this course.

We have the following connection between Bayes risk and admissibility:

Theorem 19. A unique Bayes estimator is admissible.

Proof. If T̂Π is a Bayes estimator of T (θ) for the prior Π and is not admissible, then for some other
T̂ ′, Rθ(T̂

′) ≤ Rθ(T̂Π) for all θ ∈ Θ. Then∫
θ∈Θ

Rθ(T̂
′)dΠ(θ) ≤

∫
θ∈Θ

Rθ(T̂Π)dΠ(θ).

But since T̂Π is a Bayes estimator, T̂ ′ is also a Bayes estimator. By uniqueness, we have T̂Π must
be admissible.

In fact, admissible estimator is either a Bayes estimator or a limit of a sequence of Bayes
estimators only under certain extra conditions. For the complete statement and a proof of this
claim, see the Appendix for Chapter 4 of [? ].

An obvious connection between minimax risk and worst-case Bayes risk is

R∗ ≥ R∗
B = sup

π
R∗

π.

Example 3. Player A (statistician) guesses any θ̂ from all natural numbers and compares with
Player B (nature)’s choice. The loss for player A is 1{θ̂ < θ}. Here R∗ ≥ limθ→∞ Pθ(θ̂ < θ) = 1.
But for any prior Π on all natural numbers, RΠ(θ̂) =

∫
Pθ(θ̂ < θ)dΠ(θ) and if we let θ̂ → ∞,

RΠ(θ̂) = 0. This is true for any prior so R∗ ≥ 1 > 0 = R∗
B.

Remark 20. The above inequality has a game-theoretic interpretation in the context of a min-max
game. Player A tries to minimize Rθ(T̂ ) whereas Player B tries to maximize Rθ(T̂ ). Whoever goes
first has a disadvantage: in worst-case setting, statistician goes first and nature goes second

Then the question is when equality holds. This can often be answered by viewing minimax risk
and Bayes risk in optimization lens. Let us look at minimax risk but for the moment assuming (1)
our goal is to estimate the parameter θ itself, (2) Θ is finite hence inf and sup are simply min and
max, and (3) the loss function ℓ(θ, θ̂) is convex in the argument θ̂:

R∗ = min
θ̂

max
θ∈Θ

Eθ[ℓ(θ̂, θ)]

= min
θ̂,v

v, subject to Eθ[ℓ(θ̂, θ)] ≤ v, θ ∈ Θ.
(13)
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R∗ is in fact a convex program: the mapping P
θ̂|Data

7→ Eθ[ℓ(θ̂, θ)] is simultaneously convex and

concave (so affine) and maxθ∈Θ over affine functions is a convex function.
Now look at the Lagrangian of (13):

Lagrangian(θ̂, v, λ) = v +
∑
θ∈Θ

λθ

(
Eθ[ℓ(θ̂, θ)]− v

)
=

(
1−

∑
θ∈Θ

λθ

)
v +

∑
θ∈Θ

λθEθ[ℓ(θ̂, θ)]

(14)

where λ’s are the Lagrangian multipliers. Then the Lagrangian-Fenchel dual is

max
λ

min
θ̂,v

Lagrangian(θ̂, v, λ).

But note that unless
∑

θ∈Θ λθ = 1, min
θ̂,v

Lagrangian(θ̂, v, λ) = −∞, which is moot. Thus λ forms
a probability measure over Θ. But the dual problem under this constraint becomes

max
λ∈Probability Measures(Θ)

min
θ̂
Rλ(θ̂) ≡ R∗

B.

So whenever strong duality holds, we have Bayes risk equals minimax risk. One special sufficient
condition is when both Θ and the data are finite sets.

Example 4. Estimating a normal mean µ from a single observation X ∼ N(µ, 1). An obvious
estimator for µ is X. Is it minimax optimal under squared L2 risk? First compute its risk:
Rµ(X) = E(X − µ)2 = 1. The supremum over Rµ(X) is always 1. Is it tight i.e. R∗ ≥ 1? In this
simple example, we can look at the Bayes risk:

R∗ ≥ sup
π
R∗

π.

Choose a prior π = N(0, σ2) on µ. Then the Bayes estimator in this case is

T̂Bayes = E[µ|X] = X
σ2

1 + σ2

and Rπ(T̂Bayes) is

Eµ∼N(0,σ2)Eµ(µ− E[µ|X])2 = Eµ∼N(0,σ2)Eµ

(
µ− 1

1 + σ2
X

)2

=
σ2

1 + σ2
≤ 1.

Here a worst-case prior is quite obvious: R∗
B = supπ Rπ(T̂Bayes) ≥ limσ2→∞

σ2

1+σ2 = 1. So we
conclude that X is minimax optimal under squared L2 loss. But minimax estimator need not be
unique: As we will see shortly after, another estimator called James-Stein estimator dominates X
in the squared L2 risk so it is also minimax optimal.

Example 5. We can generalize the above calculations to many normal mean models: X ∼
MVN(µ, σ2I) with d dimensions. Then the minimax risk is dσ2.

Example 6. Now if we observe n independent samples rather than one sample: Xi = µ + Zi,

Zi
iid∼ MVN(0, I) again with µ ∈ Rd. Then R∗ = d

n .
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Proof. Obviously the empirical mean X̄ is a sufficient statistic of µ, which reduces the model to
X̄ ∼MVN(µ, 1nI). Using the minimax risk of many normal mean models, we have R∗ = d

n .

Example 7. Now what if the normality assumption is dropped? Xi = µ+Zi, Zi
iid∼ (0, Id) where

(0, Id) is a abuse of notation of mean zero and identity covariance matrix. What is R∗ under
squared L2 risk?

Proof. In terms of the upper bound, let us try X̄.

Rµ(X̄) = E∥X̄ − µ∥2 = EX̄⊤X̄ − µ⊤µ

=
d∑

j=1

(
E[X̄2

j ]− µ2
j

)

=
d∑

j=1

 1

n2
E

( n∑
i=1

Xi,j

)2
− µ2

j


=

d∑
j=1

(
1

n
E[X2

1,j ] +
n− 1

n
E[X1,jX2,j ]− µ2

j

)

=

d∑
j=1

(
1

n
(µ2

j + 1) +
n− 1

n
µ2
j − µ2

j

)
=
d

n
.

How about the lower bound? Since in this example, we are working on a much more general
setting than the multivariate Gaussian example. By plain logic, the lower bound in a general setting
must not be smaller than the lower bound in a special setting. Thus R∗ ≥ d

n still holds.

The above setting is what statisticians actually care about. Given a statistical model and a
statistical problem, how many samples should I collect to achieve a desirable statistical accuracy.
When the data is i.i.d., then the space of probability measures of n data is

Pn =
{
P⊗n
θ : θ ∈ Θ

}
(15)

Definition 21 (Sample complexity). The sample complexity of a statistical model is, given an
error tolerance ϵ > 0,

n∗(ϵ) = min{n ∈ N : R∗(Pn) ≤ ϵ}.

In research, people sometimes want high-probability guarantee instead of average guarantee: given
an error tolerance ϵ > 0 and a confidence level 0 < δ < 1, the sample complexity n∗(ϵ, δ) under loss
ℓ is the smallest natural number such that

inf
θ̂n

sup
θ∈Θ

Pθ

(
ℓ(θ, θ̂n) ≤ ϵ

)
≥ 1− δ.
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Remark 22 (Relation with PAC learnability). In 1984, now Turing award winner Leslie G Valiant
[? ] created a concept called PAC (Probably Approximately Correct) learnability. It is viewed as
the theoretical foundation of modern machine learning research because it is closely related to the
generalization error. PAC learnability is defined as: for any δ > 0 and θ̂

sup
θ∈Θ

Pθ

(
ℓ(θ̂n, θ) ≤ ϵ

)
≥ 1− δ (16)

but ϵ only depends on the data and δ, and most importantly, θ̂ is usually over poly-time computable
quantities at least in theoretical computer scientists’ mind.

An interesting anecdote: Larry Wasserman wrote a blog in 2013 on PAC learnability and,
just like most statisticians, tried to protect our own territory by claiming PAC learnability was
what statisticians have been doing for the last century. This inevitably stimulated a lot of debate
between him and theoretical computer scientists, who were not as onto statistical problems as they
are today.

2.4 Stein’s paradox

For the many normal mean model, we have seen that X is the MLE and the minimax optimal
estimator. But is it admissible? Interestingly, when d = 1, 2, it is admissible and proved by Charles
Stein himself in Sections 2-4 of [? ]. But Charles Stein shocked the statistics world in that same
1956 paper by showing that it is inadmissible when d ≥ 3 and completely dominated by a nonlinear
estimator, later called James-Stein estimator [? ? ] under the quadratic loss. This estimator is
the precursor of ridge regression, Lasso, and many other popular estimators in high-dimensional
statistics.

We consider the following setup: Xd×1 ∼ N(µd×1, σ
2Idd×d), with σ2 known to us and the

unknown parameter is µ.
First, observe that

Rµ(X) = Eµ∥µ−X∥22 =
d∑

i=1

Eµi(Xi − µi)
2 = dσ2.

Stein considers spherically symmetric estimators (lying on the line passing through X and the
distance to 0 only depends on ∥X∥2 or Γ−1µ̂(ΓX) for any orthogonal transformation Γ) of the
following form:

µ̂(X) = g(X)X i.e.

 µ̂1(X)
...

µ̂d(X)

 =

 g(X)X1
...

g(X)Xd

 .

g is usually called Stein’s shrinker. Then our goal is to find a Stein’s shrinker g s.t.

Rµ(µ̂(X))−Rµ(X) = Rµ(µ̂(X))− dσ2 < 0.

Let us calculate the risk of µ̂(X) first.

Rµ(µ̂(X)) = Eµ∥µ̂(X)− µ∥22
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= Eµ∥µ̂(X)−X +X − µ∥22
= Eµ∥µ−X∥22 + Eµ∥µ̂(X)−X∥22 + 2Eµ (µ̂(X)−X)⊤ (X − µ)

= dσ2 + Eµ∥µ̂(X)−X∥22 + 2Eµµ̂(X)⊤(X − µ)− 2EµX
⊤(X − µ)

= dσ2 + Eµ∥µ̂(X)−X∥22 + 2Eµµ̂(X)⊤(X − µ)− 2Eµ(X − µ)⊤(X − µ)

= dσ2 + Eµ∥µ̂(X)−X∥22 + 2Eµµ̂(X)⊤(X − µ)− 2Eµ∥X − µ∥22

=− dσ2 + Eµ∥µ̂(X)−X∥22 + 2
d∑

i=1

Eµµ̂i(X)(Xi − µi).

Then recall the famous Stein’s identity for normal distribution, we have

Eµµ̂i(X)(Xi − µi) = σ2Eµ

[
∂µ̂i(X)

∂Xi

]
= σ2Eµ

[
∂g(X)

∂Xi
Xi + g(X)

]
Plugging in Rµ(µ̂(X)), we have

Rµ(µ̂(X)) = −dσ2 + Eµ∥g(X)X −X∥22 + 2σ2
d∑

i=1

Eµ

[
∂g(X)

∂Xi
Xi + g(X)

]

=dσ2Eµ [2g(X)− 1] + Eµ∥(g(X)− 1)X∥22 + 2σ2
d∑

i=1

Eµ

[
∂g(X)

∂Xi
Xi

]
.

Then Stein guess the following ansatz:

g(x) = 1− c

∥x∥22
with partial derivative, for i = 1, · · · , d,

∂g(x)

∂xi
=

2cxi
∥x∥42

.

Then we want to tune the value of c such that

Rµ(µ̂(X))−Rµ(X) = dσ2Eµ [2(g(X)− 1)] + Eµ(g(X)− 1)2∥X∥22 + 2σ2
d∑

i=1

Eµ

[
∂g(X)

∂Xi
Xi

]

=− 2dσ2Eµ

[
c

∥X∥22

]
+ Eµ

[
c2∥X∥22
∥X∥42

]
+ 4σ2Eµ

[
c
∑d

i=1X
2
i

∥X∥42

]

=− 2dσ2Eµ

[
c

∥X∥22

]
+ Eµ

[
c2

∥X∥22

]
+ 4σ2Eµ

[
c

∥X∥22

]
=Eµ

[
1

∥X∥22

(
c2 + 4cσ2 − 2dσ2c

)]
< 0.

Consider the function h(c) = c2+4cσ2−2dσ2c. The above desiderata is satisfied if the minimizer
of h is negative:

h◦ = min
c∈R

h(c) : 2c◦ + 4σ2 − 2dσ2 = 0 ⇒ c◦ = σ2(d− 2)
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⇒ h◦ = σ4(d− 2)2 + 4σ4(d− 2)− 2dσ4(d− 2) = σ4(d− 2)2 − 2σ4(d− 2)2 = −σ4(d− 2)2 < 0

if d ≥ 3. Hence when we choose g◦(X) = 1 − σ2(d−2)
∥X∥22

, Rµ(µ̂(X)) − Rµ(X) < 0 provided that

Eµ

[
1

∥X∥22

]
exists.

Luckily, for d ≥ 3, we have the following lemma:

Lemma 23. For d ≥ 3, for any µ ∈ Rd, 0 < Eµ

[
1

∥X∥22

]
<∞.

Proof. This lemma can be proved by exploiting the rotation invariance of isotropic Gaussian. First,
we observe

E
[

1

∥X∥22

]
= E

[
1

∥σZ + µ∥22

]
= E

[
1

σ2∥Z + σ−1µ∥22

]
.

By rotation invariance, we know ∥Z + ν∥22 ∼ ∥Z + ν ′∥22 for any ν,ν ′ such that ∥ν∥2 = ∥ν ′∥2
because one can always find a Γ ∈ O such that Γν = ν ′. So we can create a new vector ν =(
σ−1∥µ∥2, 0, · · · , 0

)⊤
and have

E
[

1

∥X∥22

]
= E

[
1

σ2∥Z + ν∥22

]
=

1

σ2(
√
2π)d

∫
exp

(
−∥z∥22

2

)
∥ν + z∥−2

2 dz

=
1

σ2(
√
2π)d

∫
exp

(
−∥x− ν∥22

2

)
∥x∥−2

2 dx

=
1

σ2(
√
2π)d

exp

(
−σ

−2∥µ∥22
2

)∫
exp

(
x1∥µ∥2
σ

− ∥x∥22
2

)
∥x∥−2

2 dx

≤ 1

σ2(
√
2π)d

exp

(
−σ

−2∥µ∥22
2

)∫
exp

(
3∥µ∥22
σ2

+
∥x∥22
3

− ∥x∥22
2

)
∥x∥−2

2 dx

=
1

σ2(
√
2π)d

exp

(
5σ−2∥µ∥22

2

)∫
exp

(
−∥x∥22

6

)
∥x∥−2

2 dx

≲
1

σ2(
√
2π)d

exp

(
5σ−2∥µ∥22

2

)∫ ∞

0
exp

(
−r

2

6

)
rd−3dr

where in the first inequality we use Young’s inequality |xy| ≤ 3x2+y2/3 and in the second inequality
we use the polar transformation.

Why intuitively d = 3 is the critical dimension and why spherically symmetric estimators? Or
even more simply put, why shrinkage at all? Stein’s original proof has provided a great deal of
insights already and it is deeply connected to the rotation invariance of Gaussian. First, why shrink-
age? The following heuristic argument might be helpful: Using standard chi-squared concentration
bound

∥X∥22 = ∥µ∥22 + d+Op(
√
d)

which gives

∥µ∥ =

√
∥X∥22 − d−Op(

√
d)
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≈ ∥X∥2 −
d+Op(

√
d)

2∥X∥2
.

In terms of why only spherically symmetric estimators? I will provide a partial argument given
by Stein and you are suggested to read Section 4 of [? ] to finish the argument. Stein first show
that there does not exist estimators other than spherically symmetric estimators that can achieve
a better squared L2 risk than X itself. Suppose on the contrary, there exists such an estimator µ̃.
Then

Rµ(µ̃(X)) < Rµ(µ̂(X)).

By continuity of the risk, if the above holds, then it must hold for an open set. Choose some Γ ∈ O,
then

Rµ(Γ
−1µ̃(ΓX)) = Eµ

[(
Γ−1µ̃(ΓX)− µ

)2]
= Eµ

[
(µ̃(ΓX)− Γµ)2

]
< Rµ(µ̂(X)).

Thus the above display must also hold for an open set including Γ in O. Take λ to be the Haar
measure on O (an invariant measure). Then define a (Bayesian) spherically symmetric estimator
µ̃′(X) :=

∫
Γ−1µ̃(ΓX)dλ(Γ). Finally, by the convexity of the risk, we have

Rµ(µ̃
′(X)) ≤

∫
Rµ(Γ

−1µ̃(ΓX))dλ(Γ) < Rµ(µ̃(X)).

Lawrence (aka Larry) Brown (passed in 2018), a legendary statistician at Wharton statistics
department, spent a large part of his career trying to understand this and provided a probably
much deeper reason. As a real mathematician, Brown [? ] amazingly noticed the connection of
this problem to the recurrence of Brownian motion at d ≤ 2 and the transience at d ≥ 3, and the
existence of solution to the exterior Dirichlet problem only if d ≤ 2. The exterior Dirichlet problem
is

∇u = 0, |x| > 1, u =

{
1 |x| = 1
0 |x| → ∞.

Brown’s resolution has a very strong Bayesian flavor. You can read a summary of the above results
in [? ].

James-Stein estimator has recently motivated a lot of interesting papers in large dimensional
(d ≍ n) covariance/Gram matrix estimation [? ? ? ]. The original idea (once again) goes back to
Charles Stein’s paper [? ? ].

2.4.1 Empirical Bayes interpretation

James-Stein estimator also goes beyond the shrinkage paradigm. It has a Bayesian interpretation [?
] first realized by Herbert Robbins, who is more famous for his contribution to sequential decision
making. Machine learning people often pay homage to Robbins as the first person working on
reinforcement learning.

Consider putting a prior Π on µj and Xj |µj ∼ N(µj , 1). Then Xj has marginal distribution
with density

fXj (x) =

∫
φ(x− µj)dΠ(µj)
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where φ denotes the standard normal cdf. Then we have the following famous Tweedie’s formula2

for the Bayes estimator under the normal model:

E[µj |Xj = x] = x+
d

dx
log fXj (x) = x+

f ′Xj
(x)

fXj (x)
(17)

So if we choose a prior µj ∼ N(0, ν2), then marginally Xj ∼ N(0, κ2 = ν2 + 1) for j = 1, · · · , d.
Then

f ′Xj
(x)

fXj (x)
= − x

κ2
so E[µj |Xj = x] = x− x

κ2
.

This is now extremely similar to the James-Stein estimator except that the hyperparameter κ2 of
the prior is not specified so κ2 is unknown. What to do? Because we have i.i.d. over j = 1, · · · , d,
we can try to estimate κ2 by ∥X∥22/(d−2), which reproduces the James-Stein shrinkage estimator.
But this strategy of estimating hyperparameters in the prior from data has a much more profound
impact – it becomes a new school of statistical philosophy – the Empirical Bayesianism. It also
becomes a very powerful framework for dealing with model selection, multiple testing, and adaptive
estimation in practice. Empirical Bayes is also the underlying philosophy of mixed-effect/random-
effect models, multi-level modeling, and hierarchical Bayes3. In terms of machine learning, the
above philosophy is essentially what meta or multi-task learning (learning a common model from
multiple tasks) is trying to achieve. But meta or multi-task learning focuses more on the algorithmic
aspects.

Theoretical analysis of empirical nonparametric Bayesian procedure is notoriously difficult. For
example, in nonparametric Bayesian, people (such as Aad van der Vaart, Ismael Castillo) often
prove certain theorems when the prior hyperparameters are tuned with searching, which is almost
never used in practice. Empirical Bayesian is the way to go in practice, but few can theoretically
show why it works in practice.

Along this line, James-Stein estimator has also been generalized to the many Poisson mean
model in [? ]. Robbins’ estimator for many Poisson mean model is again inspired from the Bayesian
interpretation (Tweedie’s formula for Poisson):

λ̃j = (Yj + 1)
fΠ(Yj + 1)

fΠ(Yj)
(18)

where fΠ(·) is the marginal of Yj when we choose a prior over λj ∼ Π. Robbins simply used the
empirical distribution in the data directly to replace the prior-dependent marginal:

λ̂j = (Yj + 1)
N(Yj + 1)

N(Yj)
(19)

where N(y) is the number of counts equal to y.

2Check on your own at least for once!
3Applied statisticians love these complex models before deep neural nets showed up. The most famous Bayesian

statistician nowadays is Andrew Gelman. He basically called empirical Bayesian school as the Stanford School of
Statistics. You can look up related topics in his blog.
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2.4.2 More on Tweedie’s formula

For normal, Tweedie’s formula is telling us that the posterior mean is determined by the data and
the marginal density of the data under a given prior Π. When the normal likelihood has variance
s2, Tweedie’s formula (also including the posterior variance) becomes

Eµ|X [µ|X = x] = x+ s2
f ′Π,s2(x)

fΠ,s2(x)

varµ|X [µ|X = x] = s2

{
1 + s2

(
f ′′Π,s2(x)

fΠ,s2(x)
−
f ′Π,s2(x)

2

fΠ,s2(x)
2

)}
.

(20)

One may ask the following question: What is the class of marginal distributions that can
be represented as the convolution between a Gaussian density and an arbitrary prior probability
measure? The answer is quite remarkable:

Theorem 24 (Guo, McQueen and Richardson 2020 [? ]). When the prior Π has a density π,

fπ,t(x) =

∫
φ((x− µ)/

√
t)π(µ)dµ

is a density if and only if fπ,t is a solution to heat equation

∂

∂t
fπ,t(x) =

1

2

∂2

∂x2
fπ,t(x), t ≥ 0, x ∈ R (21)

with the boundary condition fπ,0(x) = π(x).

Why this is so remarkable? Think of the following question: if the prior π is not the true
probability measure of µ, we will easily encounter model misspecification bias. But this heat
equation characterization provides a foundation for nonparametric estimation of the posterior mean
and variance of µ. First, trigonometric polynomials (sin and cos) are eigenfunctions of the heat
equation and form an orthogonal basis system for representing fπ,t so one can simply write fπ,t
as an infinite Fourier series. Estimating a function non-parametrically is estimating a truncated
infinite series. This is exactly the route that [? ] took.

2.5 Alternative criterion exists: A case-study in robust statistics

2.5.1 Median-of-Mean (MoM) estimators

Risk defined in the above form is not the only reasonable criterion. There might be other options.

For example: let scalar random variables X1, · · · , Xn
iid∼ P with EX2 < ∞ and say varX < σ2.

Here we do not assume E|X|r < ∞ for any r > 2 (heavy-tailed distribution). Our goal is to
recover/estimate µ = EX. Under the usual squared L2 risk, the sample average X̄ is the “optimal”
estimator (no other estimator beats it in terms of the speed at which the risk converges to 0 as n
increases). But if we look at its concentration around µ, since we only assume EX2 <∞, the best
one can do is Chebyshev inequality

P
(
X̄ − µ > t

)
≤
(
nt2

σ2

)−1

.
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One can actually show that this tail bound cannot be improved [? ]. However, recall that when

X1, · · · , Xn
iid∼ N(µ, σ2), we have a much better concentration of X̄ around µ:

P
(
X̄ − µ > t

)
≤ exp

{
− nt2

2σ2

}
. (22)

Then it makes perfect sense to use (22) as a criterion to evaluate estimators/decision procedures.
One would simply ask the question, if it is possible to obtain such exponential concentration when
E|X|r <∞ is not assumed for r > 2. Interestingly, there exists such an estimator called “median-
of-mean” estimator. The idea is plain and simple: divide the whole data into K equal-sized groups
and compute the sample mean of each group X̄k for k = 1, · · · ,K. So for each group-wise sample
mean, we have by Chebyshev inequality: for each k

P
(
X̄k − µ > t

)
≤
(
nt2

Kσ2

)−1

.

Choose t = 2σ/
√
n/K, then

P
(
X̄k − µ > 2σ/

√
n/K

)
≤ 1/4.

How to combine these sample averages? Let us try their median: median
(
X̄1, · · · , X̄K

)
. In the

analysis below, we use the definition of a median

P
{
median

(
X̄1, · · · , X̄K

)
− µ > 2σ/

√
n/K

}
= P

{
K∑
k=1

1{X̄k − µ > 2σ/
√
n/K} > K

2

}

≤ P
(
Binom(K, 1/4) >

K

2

)
≤ P

(
K∑
k=1

(Bk − 1/4) >
K

4

)
Bk ∼ Bernoulli(1/4)

⋆
≤ e−K/8.

If we choose K = nϵ2

4σ2 , then

P
{
median

(
X̄1, · · · , X̄K

)
− µ > ϵ

}
< e−nϵ2/(32σ2).

For ⋆, we use Hoeffding inequality:

Theorem 25 (Hoeffding inequality: General form). X1, · · · , Xn are independent random variables
with mean 0, and Xi ∈ [ai, bi]. Denote Sn =

∑n
i=1Xi. Then for any λ ≥ 0,

EeλSn ≤ eλ
2
∑n

i=1(bi−ai)
2/8.

Then by Chernoff bound

P(Sn ≥ t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
P(Sn ≤ −t) ≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
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Proof. For a random variable X bounded between [a, b], its MGF has the following bound:

Eeλ(X−µ) ≤ e
λ2

8
(b−a)2 (23)

Then obviously when X1, · · · , Xn have mean zero,

EeλSn ≤ eλ
2
∑n

i=1(bi−ai)
2/8

and the rest follows. We are left to prove (23). To this end, define g(λ) = logEeλX . Then

g′(λ) =
EXeλX

EeλX
, g′′(λ) =

EX2eλX

EeλX
−
(
EXeλX

EeλX

)2

.

By Taylor expansion, for some ϵ ∈ (0, λ)

g(λ) = g(0) + g′(0)λ+
λ2

2
g′′(ϵ)

= 0 + 0 +
λ2

2
g′′(ϵ)

=
λ2

2
varϵ,∗(X) ≤ λ2

8
(b− a)2.

In the last line, we use the fact for any random variable bounded between a and b, regardless of
the underlying probability measure, we have

var∗(X) = E∗(X − µ∗)
2 ≤ E∗(X − b+ a

2
)2 ≤ 1

4
(b− a)2.

The above idea can be extended from heavy-tailed scalar random variables to Rd, by defining
median in high dimension appropriately [? ? ].

2.5.2 Trimmed mean estimators

Another robust mean estimator is simply removing the extreme data points:

µ̂trim =
1

n

n∑
i=1

Xi1{|X|i ≤ |X|(c log(1/δ)/n)} (24)

where δ is the desired confidence level (i.e. P (µ̂trim − µ ≥ ...) ≤ 1− δ). The analysis is somewhat
more involved due to the involvement of order statistics. We will leave it to your own reading [? ].

3 Hypothesis testing

Hypothesis testing is the simplest statistical problem but it still provides a very deep understanding
on the difficulty of a statistical problem. Because studying estimation is often reduced to studying
hypothesis testing, some theoretical-oriented statisticians simply study hypothesis testing problem
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in their whole life. But on the other hand, “trained to reject null hypothesis” or simply “trained
to reject applied people’s finding” is one stigma attached to statisticians4.

Yuri Ingster, a Russian mathematical statistician, is the grandmaster on hypothesis testing.
His book [? ] co-authored with his student contains almost everything you want to know about
testing hypothesis and even more.

3.1 Minimax hypothesis testing

Let O1, · · · , On ∼ P where P ∈ P. Recall that in general, the goal is to test

H0 : P = P0 vs. Ha : P ̸= P0.

A valid level α test Tn is a measurable function of the data and α to {0, 1} such that

sup
P∼H0

P⊗n(Tn = 1) ≡ P⊗n
0 (Tn = 1) ≤ α.

Minimax criterion for hypothesis testing is about the power, or the Type-II error:

βn(ϵ) = inf
Tn

sup
P∈P(ϵ)

P⊗n(Tn = 0) (25)

where
P(ϵ) = {P ∈ P : d(P0,P) > ϵ} (26)

with some distance measure d (e.g. metrics or divergences). Define the critical signal strength-
/minimax separation rate ϵn(δ) as

ϵn(δ) = inf {ϵ : βn(ϵ) ≤ δ} . (27)

Remark 26. When the problem at hand is difficult, one can relax the above criterion and consider
the minimax risk for hypothesis testing as follows:

Rn(ϵ)
∗ = inf

Tn

{
P0(Tn = 1) + sup

P∈P(ϵ)
P(Tn = 0)

}
. (28)

Test Tn is said to be asymptotically powerful if limRTn(ϵ) = 0; asymptotic powerless if limRTn(ϵ) ≥
1. The critical signal strength/minimax separation rate is the ϵ† such that if ϵ ≪ ϵ† Rn(ϵ)

∗ → 1
and if ϵ≫ ϵ† Rn(ϵ)

∗ → 0.

3.2 Some classical results

Neyman-Pearson lemma is one of the most important classical results in statistics. It tells us for
single vs. single hypothesis testing problems, likelihood ratio test (LRT) is the optimal α-level test
(most powerful or smallest Type-II error).

4See Larry Wasserman’s roundtable talk at the University of Chicago.
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Theorem 27 (Neyman-Pearson lemma). X ∼ P ∈ P. H0 : P = P0 vs. Ha : P = P1. Then the
following α-level test

T̂c = 1

{
dP1

dP0
(X) ≥ c

}
(29)

with c chosen such that
P0(T̂c = 1) = α

is the most powerful test for H0 vs. Ha.

Proof. Suppose there is another α-level test T̂ ′. The rejection region of T̂c (the sample space for
which T̂c = 1) is denoted as R. The rejection region of T̂ ′ is denoted as R′. Denote R1 = R \ R′,
R2 = R′ \R, R3 = R′ ∩R. See Figure 3 below.

Figure 3: picture for Neyman-Pearson lemma

Then by the premise on T̂c and T̂
′, we have

P0(R) = α ≥ P0(R
′) by the level-α-ness of T̂ ′

⇒ P0(R1) ≥ P0(R2) by the commonality of R3.

Now we look at the power or 1− Type II error: because R1 ⊆ R and R2 ̸⊆ R, we have

P1(R1) =

∫
R1

dP1 =

∫
R1

dP1

dP0
dP0 ≥ c

∫
R1

dP0 = cP0(R1) ≥ cP0(R2) = c

∫
R2

dP0

and

c

∫
R2

dP0 = c

∫
R2

dP0

dP1
dP1 ≥ c · c−1

∫
R2

dP1 = P1(R2).

So we conclude under Ha, P1(R1) ≥ P1(R2), and finally we add the common part R3 back to the
space, we have P1(T̂c = 1) ≥ P1(T̂

′ = 1), i.e. T̂c is more powerful than any other level-α test.
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Neyman-Pearson lemma has been generalized in several directions: e.g. Karlin-Rubin theorem
for monotone likelihood ratio classes (see [? ]). For composite vs. composite testing problem,
Neyman-Pearson becomes less useful. But when dealing with complicated hypothesis testing prob-
lems, people still often start with LRT anyway.

Another important theorem is the following Wilks’ theorem. We will provide a heuristic argu-
ment and in the Chapter of M -estimation, you will be able to derive the results more rigorously.

Theorem 28 (Wilks’ theorem). X1, · · · , Xn
iid∼ Pθ for θ ∈ Θ. H0 : θ ∈ Θ0 and Ha : θ ∈ Θ1 =

Θ \ Θ0. We also assume all sorts of nice regularity conditions on Θ0 and Θ1 and the MLE θ̂n.
Then define the LRT with n i.i.d. data as follows:

Λn =
supθ∈Θ dP⊗n

θ (X1, · · · , Xn)

supθ∈Θ0
dP⊗n

θ (X1, · · · , Xn)
.

As n→ ∞, we have

2 log Λn
d→ χ2

dim(Θ)−dim(Θ0)
. (30)

Heuristic arguments. Let us only consider the simplest scenario: Θ = R (so the ambient dimension
is 1) and Θ0 = {θ0} so the dimension for H0 is 0. We expect the log-likelihood ratio test statistic
converges to χ2

1. We write down 2 log Λn explicitly below: by the i.i.d. assumption, and recall that

θ̂n is the MLE so supθ∈Θ dP⊗n
θ (X1, · · · , Xn) = dP⊗n

θ̂n
(X1, · · · , Xn)

2 log Λn = 2

{
n∑

i=1

log-likelihood(Xi; θ̂n)−
n∑

i=1

log-likelihood(Xi; θ0)

}

Then we do Taylor expansion: define ℓ(θ) =

n∑
i=1

log-likelihood(Xi; θ), so ℓ
′(θ) is the score function

2 log Λn = 2(θ̂n − θ)ℓ′(θ̂n) + (θ̂n − θ0)
2ℓ′(θ∗n).

But recall that θ̂n is the MLE, when the log-likehood function is differentiable, we have ℓ′(θ̂n) = 0.
So that leaves us

2 log Λn = (
√
n(θ̂n − θ0))

2 ℓ
′(θ∗n)

n
.

For MLE, we usually have, again under regularity conditions and when H0 is true,

√
n(θ̂n − θ0)

d→ N(0, σ2)

and here σ2 is the inverse Fisher information, i.e. the expectation of the Hessian (second-derivative)

of the log-likelihood function. But ℓ′(θ∗n)
n is very close to a sample average, so if weak law of large

number can be used, we have ℓ′(θ∗n)
n → σ−2 in P0-probability. Combining the above heuristic

arguments and Slutsky’s theorem, we argue

2 log Λn
d→ N(0, σ2)2σ−2 ∼ N(0, 1)2 ∼ χ2

1.
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In homework, we will derive Wilks’ theorem for some simple distributions for you to get a sense
what is actually going on.

Remark 29. Wilks’ theorem has been generalized in many directions: high dimension or irregular
case. In the above formulation, we have assumed the dimension d is not diverging as n → ∞. In
fact, if we let d → ∞ but d = o(n1/6), this theorem still holds. However, when d/n → c ∈ (0, 1),
2 log Λn no longer converges to a chi-square distribution [? ]. The proof technique will involve
approximate message passing (AMP) originated in statistical physics and spin glass theory and
Random Matrix Theory (RMT). We will cover AMP during this semester.

3.3 f-divergences

Before we really talk about hypothesis testing, let us take a detour and introduce another set of
tools from information theory – f -divergences – that will be very important for deriving lower
bounds (lower bounds are essentially about information-theoretical limit of a statistical problem).

f -divergences are a class of divergence measures between probability measures, generalizing the
KL divergence. One may prefer different f -divergences depending on the application contexts to
ease computation. f -divergences are very important in quantifying the difficulty.

Definition 30. f -divergence between two probability measures P and Q satisfying P ≪ Q5 are
defined as

Df (P||Q) = EQf (dP/dQ) (31)

where f : (0,∞) → R is convex and strictly convex at 1, and f(1) = 0. We also define the following
convention to handle singularities:

f(0) = lim
x↓0

f(x), 0f

(
0

0

)
= 0.

Remark 31. In fact, P ≪ Q is not necessary. We can always find another probability measure µ
(e.g. µ = (P +Q)/2) such that P ≪ µ and Q ≪ µ and redefine Df (P||Q) as

Df (P||Q) =

∫
dQ
dµ

f

(
dP/dµ
dQ/dµ

)
.

But in this course, we ignore this subtlety.

f -divergences that we might encounter in this course:

name f formula

KL divergence f(x) = x log x DKL(P||Q) = EQ

[
dP
dQ log

(
dP
dQ

)]
=
∫
dP log

(
dP
dQ

)
Total variation (TV) distance f(x) = 1

2 |1− x| dTV (P,Q) = 1
2EQ

[∣∣∣1− dP
dQ

∣∣∣] = 1
2

∫
|dP− dQ|

χ2 divergence f(x) = (1− x)2 χ2(P||Q) = EQ

[(
1− dP

dQ

)2]
=
∫ (dP−dQ)2

dQ =
∫ (dP)2

dQ − 1

squared Hellinger distance f(x) = (1−
√
x)2 H2(P,Q) = EQ

[(
1−

√
dP
dQ

)2]
=
∫ (√

dP−
√
dQ
)2

5P dominated by Q
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Remark 32. Mutual information vs. KL divergence:

I(X;Y ) = DKL(PX,Y ||PX ⊗ PY ).

Theorem 33 (Key properties of f -divergences).

1. (Monotonicity) Df (PX,Y ||QX,Y ) ≥ Df (PX ||QX).

2. (Data Processing Inequality) Suppose PY is the marginal distribution of Y of the joint PY,X =
PXPY |X and QY is the marginal distribution of Y of the joint QY,X = QXPY |X , then

Df (PX ||QX) ≥ Df (PY ||QY ),

that is, processing blurs the difference between the sources.

3. Df (P||Q) ≥ 0 and “=” holds if and only if P = Q a.s.

4. Df (P||Q) is jointly convex in both P and Q arguments

5. Given two joint PX,Y = PXPY |X and QX,Y = QXPY |X with different marginal distributions
on X but the same conditional law of Y given X, we have Df (PX,Y ||QX,Y ) = Df (PX ||QX).

6. Define the conditional f -divergence:

Df (PY |X ||QY |X | X) := EX∼PX

[
Df (PY |X ||QY |X)

]
. (32)

Suppose PY is the marginal distribution of Y of the joint PY,X = PXPY |X and QY is the
marginal distribution of Y of the joint QY,X = PXQY |X , then

Df (PY |X ||QY |X | X) ≥ Df (PY ||QY ),

that is, conditioning increases divergences.

Proof.

1. By Jensen inequality

Df (PX,Y ||QX,Y ) = EX∼QX

[
EY∼QY |Xf

(
dPX,Y

dQX,Y

)]
≥ EX∼QX

[
f

(
EY∼QY |X

dPX,Y

dQX,Y

)]
= EX∼QX

[
f

(
dQX

dQX

)]
= Df (PX ||QX).

2.

Df (PX ||QX) =

∫
dQXf

(
dPX

dQX

)
=

∫
X

∫
Y
dQX,Y f

(
dPX,Y

dQX,Y

)
by Theorem 33.5

≥
∫
Y
dQY f

(
dPY

dQY

)
= Df (PY ||QY ) by monotonicity.
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3. The first statement again follows from Jensen inequality. For the second statement, sup-
pose there exists P ̸= Q but still Df (P||Q) = 0. There exists a measurable set A such
that p := P(A) ̸= Q(A) =: q > 0. Take Y = 1{X ∈ A}, then by DPI, Df (P||Q) ≥
Df (Bern(p)||Bern(q)) = 0. Since P ≪ Q, we must have 0 < Q(A) < 1. Therefore

0 = Df (Bern(p)||Bern(q)) = qf

(
p

q

)
+ (1− q)f

(
1− p

1− q

)
.

So we can find ρ, x, x′ such that ρf(x) + (1− ρ)f(x′) = 0 and ρx+ (1− ρ)x′ = 1 so f is not
strictly convex at 1, a contradiction.

4. Define a mapping g(a, b) : (a, b) 7→ bf(a/b). We can compute the Hessian of g(a, b) and check
it is positive semi-definite, which implies the joint convexity of Df (P||Q).

5.

Df (PX,Y ||QX,Y ) =

∫
X

∫
Y
dQX,Y f

(
dPX,Y

dQX,Y

)
=

∫
X

∫
Y
dQXdPY |Xf

(
dPXdPY |X

dQXdPY |X

)
=

∫
X
dQX

∫
Y
dPY |X︸ ︷︷ ︸
≡1

f

(
dPX

dQX

)

= Df (PX ||QX).

6. By the joint convexity of Df (P||Q):

Df (PY |X ||QY |X | X) := EX∼PX

[
Df (PY |X ||QY |X)

]
≥ Df

(
EX∼PX

PY |X ||EX∼PX
QY |X

)
= Df (PY ||QY ).

Remark 34. For deeper results of f -divergence, a very good resource will be Yihong Wu and Yury
Polyanskiy’s lecture notes on “Information-Theoretic Methods for High-Dimensional Statistics”.
The structure of their notes is very similar to a large part of our course, but we emphasize much
less on information theory. But be cautious while reading their notes as they were scribed by
students and might contain numerous typos/errors.

There is also a strong connection between f -divergence and sampling. See the famous f -GAN
paper: https://arxiv.org/abs/1606.00709.

Theorem 35 (Connection between dTV and hypothesis testing; Scheffé’s theorem). Suppose X ∼
P′ and we want to test H0 : P′ = P vs. Ha : P′ = Q

dTV (P,Q) = 1−
∫
(dP ∧ dQ);
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dTV (P,Q) = sup
A

∫
A
dP− dQ ≡ sup

A
P(A)−Q(A);

and

dTV (P,Q) = 1− inf
T :X→{0,1}

P(T = 1)︸ ︷︷ ︸
Type-I error

+ Q(T = 0)︸ ︷︷ ︸
Type-II error

 .

Proof. The first statement follows from the definition.
For the second statement, consider the measurable set A = {x : P(x) > Q(x)}. Then

dTV (P,Q) =
1

2

∫
|dP− dQ|

=
1

2

∫
A
|dP− dQ|+ 1

2

∫
Ac

|dP− dQ|

=
1

2

∫
A
dP− dQ+

1

2

∫
Ac

dQ− dP

≤ sup
A

∫
A
dP− dQ.

Next, for any measurable A′, we have∣∣∣∣∫
A′

dP− dQ
∣∣∣∣

= max

{∫
A′

dP− dQ,
∫
A′

dQ− dP
}

≤ max

{∫
A′∩A

dP− dQ,
∫
A′∩Ac

dQ− dP
}

≤ max

{∫
A
dP− dQ,

∫
Ac

dQ− dP
}

=

∫
A
P−Q =

1

2

∫
|dP− dQ| = dTV (P,Q).

The third statement follows from the first statement combined with Neyman-Pearson lemma.
You will complete the proof in your homework.

Now we look at n i.i.d. data setting. So X1, · · · , Xn
iid∼ P′ and we still want to test H0 : P′ = P

and H1 : P′ = Q. Now the sum of Type-I error and Type-II error for some test statistic Tn becomes:

inf
Tn:Xn→{0,1}

P⊗n(Tn = 1)︸ ︷︷ ︸
Type-I error

+Q⊗n(Tn = 0)︸ ︷︷ ︸
Type-II error

.

By Theorem 35, we know, if assuming that probability measures P and Q have densities p and q

inf
Tn:Xn→{0,1}

P⊗n(Tn = 1) +Q⊗n(Tn = 0) = 1− dTV (P⊗n,Q⊗n) =

∫
(dP⊗n ∧ dQ⊗n)
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=

∫ ( n∏
i=1

p(xi) ∧
n∏

i=1

q(xi)

)
dx1 · · · dxn.

So an exact computation of dTV is difficult to carry out for product measures. This is one of the
reasons why we need some many f -divergences. In fact, we can sandwich dTV by squared Hellinger
distances as follows

Lemma 36 (Le Cam’s inequality6).

0 ≤ 1

2
H2(P,Q) ≤ dTV (P,Q) ≤ H(P,Q)

(
1− H2(P,Q)

4

)1/2

≤ 1.

Proof. For the first inequality, notice:

1

2
H2(P,Q) = 1−

∫ √
dP
√

dQ ≤ 1−
∫

dP ∧ dQ ≡ dTV (P,Q).

For the second inequality, notice:

H2(P,Q)

(
1− H2(P,Q)

4

)
= 2

(
1−

∫ √
dP
√
dQ
)[

1− 2

4

(
1−

∫ √
dP
√
dQ
)]

=

(
1−

∫ √
dP
√
dQ
)(

1 +

∫ √
dP
√

dQ
)

= 1−
(∫ √

dP
√

dQ
)2

≡ 1−
(∫ √

dP ∧ dQ
√
dP ∨ dQ

)2

≥ 1−
∫

dP ∧ dQ
∫

dP ∨ dQ [by Cauchy-Schwarz]

= 1−
∫

dP ∧ dQ
[
2−

∫
dP ∧ dQ

]
[because

∫
dP ∨ dQ+

∫
dP ∧ dQ = 2]

=

(
1−

∫
dP ∧ dQ

)2

≡ dTV (P,Q)2.

We can also compare other f -divergences with KL divergence in the following results.

Lemma 37.
H2(P,Q) ≤ DKL(P||Q).

6This is the first time we encounter results attributed to Lucien Le Cam. His name will show up many times in
the M-estimation and MLE chapter.
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Proof. When x > −1, we have − log(1 + x) ≥ −x. So

DKL(P||Q) =

∫
dP log

(
dP
dQ

)
= 2

∫
dP

(
− log

√
dQ
dP

)

= 2

∫
dP

{
− log

[(√
dQ
dP

− 1

)
+ 1

]}

≥ 2

∫
dP

[(√
dQ
dP

− 1

)]

= 2

(∫ √
dQ

√
dP− 1

)
≡ H2(P,Q).

Lemma 38 (Pinsker’s inequality7).

dTV (P,Q) ≤
√
DKL(P||Q)/2 ∧

(
1− 1

2
exp {−DKL(P||Q)}

)
Proof. We first prove the first part. Define a function g(x) = x log x − x + 1 for x ≥ 0 and
f(x) = (x − 1)2 −

(
4
3 + 2

3x
)
g(x) (which can be proved by Taylor expansion). So f(x) ≤ 0 for all

x ≥ 0.

dTV (P,Q) =
1

2

∫
|dP− dQ| = 1

2

∫ ∣∣∣∣ dPdQ − 1

∣∣∣∣ dQ
≤ 1

2

∫
dQ

√(
4

3
+

2

3

dP
dQ

)
g

(
dP
dQ

)

≤ 1

2

√∫
dQ
(
4

3
+

2

3

dP
dQ

)√∫
dQg

(
dP
dQ

)

≤ 1

2

√∫ (
4

3
dQ+

2

3
dP
)√∫

dQ
[
dP
dQ

log

(
dP
dQ

)
− dP

dQ
+ 1

]

=
1√
2

√∫
dQ

dP
dQ

log

(
dP
dQ

)
=
√
DKL(P||Q)/2.

The second part is relatively easy:∫
dP ∧ dQ ≥ 1

2

(∫ √
dP
√

dQ
)2

=
1

2
exp

(
2 log

∫ √
dP
√

dQ
)

7You might also encounter Pinsker’s constant in the future. It is the optimal constant in front of minimax risk
convergence rate. Pinsker’s constant is almost hopeless to obtain in most problems.
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=
1

2
exp

(
2 log

∫
dP
√

dQ
dP

)

≥ 1

2
exp

(
2

∫
dP log

√
dQ
dP

)

=
1

2
exp

(
−
∫

dP log
dP
dQ

)
=

1

2
exp (−DKL(P||Q)) .

Lemma 39.
DKL(P||Q) ≤ log

(
1 + χ2(P||Q)

)
≤ χ2(P||Q).

Next, we observe that Hellinger distance of product measures tensorizes in a very general form:

Lemma 40. Given two sequences of probability measures {Pn}, {Qn} so the probability measure for
each data can depend on the index n (think of high dimensional random vectors where the dimension
grows with the sample size; so does the probability measure for each random vector). Then

H2(P⊗n
n ,Q⊗n

n ) = 2− 2

(
1− 1

2
H2(Pn,Qn)

)n

(33)

or more generally

H2

(
n⊗

i=1

Pi,n,

n⊗
i=1

Qi,n

)
= 2− 2

n∏
i=1

(
1− 1

2
H2(Pi,n,Qi,n)

)
. (34)

Proof.

H2(P⊗n
n ,Q⊗n

n ) = 2− 2

∫
· · ·
∫

︸ ︷︷ ︸
repeat n times

√
dP⊗n

n

√
dQ⊗n

n

= 2− 2

∫ √
dPn

√
dQn · · ·

∫ √
dPn

√
dQn︸ ︷︷ ︸

again, repeat n times

= 2− 2

(∫ √
dPn

√
dQn

)n

.

Finally, recall that H2(Pn,Qn) = 2− 2
∫ √

dPn

√
dQn.

Now let us go back to the hypothesis testing problem when we observe n i.i.d. data points.
We can now use the squared Hellinger distance as a surrogate for total variation distance because
squared Hellinger distance tensorizes, making the analysis much simpler.

1-29



Theorem 41 (Non-asymptotic version of Theorem 42). For any 0 < δ < 1/2, for any test statistic
with testing error not surpassing δ, to distinguish between P and Q with H2(P,Q) ≤ 1, we need at
least

1

H2(P,Q)
log

(
1

δ

)
many independent samples.

Proof sketch. Applying Lemma 36 and Lemma 40, together with the observation that

1− 1

2
x ≥ e−x, if 0 < x < 1.

Theorem 42. Given two sequences of probability measures {Pn}, {Qn}. As n→ ∞,

dTV (P⊗n
n ,Q⊗n

n ) → 0 ⇔ H2(Pn,Qn) = o

(
1

n

)
,

dTV (P⊗n
n ,Q⊗n

n ) → 1 ⇔ H2(Pn,Qn) = ω

(
1

n

)
.

(35)

Proof sketch. A direct consequence of the above theorem. The conclusion also follows by noticing(
1− C

n

)n → e−C as n→ ∞.

Theorem 42 entails the following “intuition” any statisticians should always bear in mind: In
general, for parametric statistical models (i.e. the probability measure Pn ≡ P invariant to n),
if the difference between two hypotheses is around or below order 1/

√
n, the two hypotheses are

essentially hard to distinguish.
In words, computing the Hellinger distance between probability measures for one data point

suffices to tell if the optimal test is asymptotically powerful or powerless.
Similar results hold for χ2-divergence, which will be used in the example we describe next.

Lemma 43.

1. 2dTV (P,Q) ≤
√
χ2(P||Q)

2. χ2(P⊗n
n ||Q⊗n

n ) =
(
1 + χ2(Pn||Qn)

)n − 1, or more generally,

χ2

(
n⊗

i=1

Pi,n||
n⊗

i=1

Qi,n

)
=

n∏
i=1

(
1 + χ2(Pi,n||Qi,n)

)
− 1.

In words, χ2-divergence being O(1) provides a sufficient condition for the testing risk to be
close to 0. Apart from tensorization, χ2-divergence can be handy when one compares a mixture
distribution with a single probability measure or two mixture distributions.
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Lemma 44 (χ2-divergence of mixtures). Given a class of probability measures parameterized by
Θ: {Pθ, θ ∈ Θ}. Define the mixture distribution mixed over a prior Π as

PΠ :=

∫
θ∈Θ

PθdΠ(θ).

Then

χ2(PΠ||Q) = E
θ,θ′

iid∼Π

[∫
dPθdPθ′

dQ

]
− 1. (36)

Proof.

χ2(PΠ||Q) =

∫
(dPΠ)

2

dQ
− 1

=

∫ (∫
θ∈Θ dPθdΠ(θ)

)2
dQ

− 1

=

∫ ∫
θ∈Θ

∫
θ′∈Θ dPθdPθ′dΠ(θ)dΠ(θ

′)

dQ
− 1 “replica trick”

=

∫
θ∈Θ

∫
θ′∈Θ

{∫
dPθdPθ′

dQ

}
dΠ(θ)dΠ(θ′)− 1 Fubini

≡ E
θ,θ′

iid∼Π

[∫
dPθdPθ′

dQ

]
− 1.

In general, χ2-divergence between two mixtures does not have nice closed-form formula, and is
usually bounded by Hellinger distance between two mixtures. See e.g. [? ] for Hellinger distance
between two mixtures.

3.4 A non-trivial single parametric testing example: Erdös-Renyi Random
Graph vs. Stochastic Block Models (SBM)

Consider two different random graph models

• One is the famous Erdös-Renyi (ER) Random Graph G(n, r), r being the probability that
any two vertices out of n total vertices connected by an edge.

• The other is the SBM SBM(n, p, q), where the graph G can be decomposed into two clusters
‘−1’ and ‘+1’. The membership of each vertex is an unbiased Rademacher random variable
ε ∼ Rad(1/2) over the cluster labels. Within clusters, the probability that any two vertices
connected by an edge is p; across clusters, the probability that any two vertices connected
by an edge is q. Let us focus on the case where r = (p+ q)/2 and bounded degree graph i.e.
p = a/n and q = b/n for some a, b = Θ(1).

We are interested in the following testing problem:

H0 : G ∼ G(n, r) vs. Ha : G ∼ SBM(n, p, q).

We will partially prove the following theorem:
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Theorem 45. There is a phase transition: as n→ ∞

• If (a−b)2

2(a+b) ≤ 1,

dTV (H0, Ha) < 1− Ω(1);

• If (a−b)2

2(a+b) > 1,

dTV (H0, Ha) → 1.

Proof. In the proof, we do not consider the critical threshold (a−b)2

2(a+b) = 1 as it is way too technical.

It suffices to show χ2(H0||Ha) = O(1). For a graph G, denote its corresponding adjacency
matrix as An×n. For a random graph G, A is a random matrix. Under H0, the probability measure
over A is simply

PA,0 =
⊗

1≤i<j≤n

PBern(r) =
⊗

1≤i<j≤n

P+Q
2

, r =
p+ q

2

where P and Q are the short-hand notation for Bern(p) and Bern(q).
Under Ha, conditioning on the memberships of all vertices ε = {εi; i = 1, · · · , n} the probability

measure over A is a mixture distribution

PA,a,ε =
⊗

1≤i<j≤n

(
PBern(p)1{εi = εj}+ PBern(q)1{εi ̸= εj}

)
=

⊗
1≤i<j≤n

(
PBern(r) + PBern(t= p−q

2
)εiεj

)
=

⊗
1≤i<j≤n

(
P+Q

2
+

P−Q
2

εiεj

)
.

To apply Lemma 44, we first compute∫
dPA,a,εdPA,a,ε′

dPA,0

=
∏

1≤i<j≤n

∫ d
(
P+Q
2 + P−Q

2 εiεj

)
d
(
P+Q
2 + P−Q

2 ε′iε
′
j

)
dP+Q

2

=
∏

1≤i<j≤n

∫
d
P+Q

2
+ d

P−Q
2

ε′iε
′
j + d

P−Q
2

εiεj +

(
dP−Q

2

)2
dP+Q

2

εiεjε
′
iε

′
j

=
∏

1≤i<j≤n

1 +
∫

(dP− dQ)2

2(dP+ dQ)︸ ︷︷ ︸
=:ϱ

εiεjε
′
iε

′
j


=

∏
1≤i<j≤n

[
1 + ϱεiεjε

′
iε

′
j

]
≤

∏
1≤i<j≤n

exp{ϱεiεjε′iε′j}
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= exp

ϱ ∑
1≤i<j≤n

εiεjε
′
iε

′
j

 ≤ exp

{
1

2
ϱ
(
ε⊤ε′

)2}
.

Then

χ2(H0||Ha) ≤ Eε,ε′

[
exp

{
1

2
ϱ
(
ε⊤ε′

)2}]
− 1.

Here ϱ is easy to calculate:

ϱ =
(p− q)2

2(p+ q)
+

(p− q)2

2(2− p− q)
=

1

n

(
(a− b)2

2(a+ b)
+ o(1)

)
.

Now we can in turn bound the χ2-divergence as follows:

χ2(H0||Ha) ≤ Eε,ε′

[
exp

{
1

2

[
(a− b)2

2(a+ b)
+ o(1)

](
1√
n
ε⊤ε′

)2
}]

− 1

≤ Eε,ε′

exp

1

2

[
(a− b)2

2(a+ b)
+ o(1)

]


1√
n

n∑
i=1

εiεi′︸ ︷︷ ︸
d→N(0,1)∼Z



2

− 1

→ E
[
exp

{
1

2

[
(a− b)2

2(a+ b)
+ o(1)

]
χ2
1

}]
︸ ︷︷ ︸

MGF of χ2
1

−1

=


+∞ (a− b)2

2(a+ b)
> 1,

1√
1− (a−b)2

2(a+b)

(a− b)2

2(a+ b)
< 1.

Remark 46. In actual proof, we also need to show the existence of a test. But due to time
limit, this part will not be covered in this course. If you are interested, the algorithm that tightly
achieves the information-theoretical limit given in the above theorem is proved in [? ], by Elchanan
Mossel, Joe Neeman, and Alan Sly in 2012. Their algorithm is based on short-cycle counting
or k-cycle counting. In particular, they showed that under H0, the number of k-cycles in G

should be close to Pois
(
1
k

(
a+b
2

)k)
, whereas under Ha, the number of k-cycles in G should be

close to Pois
(
1
k

(
a+b
2

)k
+ 1

k

(
a−b
2

)k)
. By comparing the number of k-cycles taking into account the

variance of these k-cycles, the upper bound matches the hardness threshold. In fact, [? ] were
inspired by the non-rigorous yet deep and insightful statistical physics calculations done by [? ]
in 2011, using the so-called “replica symmetric cavity method”, or “Belief Propagation (BP)”, or
“message passing”. Essentially this is a technique that, by believing that long-range interactions
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do not matter, uses mean-field limit plus some short-range interactions to approximate the whole
thermodynamic system (in SBM case, the graph). In fact, BP is exact for trees and close to being
exact for tree-like graphs. “Methods from statistical physics” is one of the hottest topic in statistics
and machine learning in recent years. You are strongly recommended to read papers and listen to
some related lectures given by Florent Krzakala, Lenka Zdeborová, David Gamarnik, and Andrea
Montanari.

3.4.1 A nonparametric example: Uniformity testing on [0, 1]

For X ∈ P([0, 1]) where P has absolutely continuous density f , we want to test

H0 : F (t) = t ∀t ∈ [0, 1] vs. Ha : F (t) ̸= t ∃t ∈ [0, 1].

Recall that for minimax testing problem, we only consider the alternative class to be sufficiently
far away from the null (otherwise it is impossible to obtain uniform result). We have the following
theorem:

Theorem 47.

H0 : F (t) = t ∀t ∈ [0, 1] vs. Ha(rn) : F ∈

{
F : sup

t∈[0,1]
|F (t)− t| ≳ rn

}

Then the minimax separation rate for testing the above hypothesis is pn ≍ 1√
n
, in the following

sense: there exists a test statistic Tn : i.i.d. X1, · · · , Xn 7→ {0, 1} such that for any α > 0

P⊗n
H0

(Tn = 1) + sup
F∈Ha(pn)

P⊗n
F (Tn = 0) ≤ α

lim inf
n

inf
T̃n

P⊗n
H0

(T̃n = 1) + sup
F∈Ha(rn)

P⊗n
F (T̃n = 0) > 0, if rn = o(pn)

(37)

Remark 48. During the lecture, I rushed through a lot of details. Please see the proof below.

Proof. Since the alternative is a composite hypothesis, for the lower bound, we need to exhibit a
“worst-case” instance in the alternative to show the hardness of the problem. This is a general
scheme for lower bound proofs. First, denote f0 = 1, the p.d.f. under H0. We define a p.d.f. f1 as
follows:

f1 = f0 +∆n (38)

where ∆n = rn∆ with ∆ any bounded function supported in [0, 1] such that
∫ 1
0 ∆(x)dx = 0 and∫ 1

0 ∆(x)2dx = 1. Then obviously f1 is a p.d.f. with support [0, 1] and the total variation distance
between f0 and f1 is, from the second representation of total variation distance given in Theorem
35,

rn sup
t

∣∣∣∣∫ t

0
∆(x)dx

∣∣∣∣ ≍ rn.

So F1 ∈ Ha(rn).
Now let us again compute χ2(Ha||H0) with product measures:

χ2(P⊗n
1 ||P⊗n

0 ) =
(
1 + χ2(P1||P0

)n − 1
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=

(
1 +

∫
f21
f0

− 1

)n

− 1

=

(∫
(f0 + rn∆)2

f0

)n

− 1

=

(
1 + r2n

∫
∆2

)n

− 1 ≤ er
2
nn − 1.

So rn = o(1/
√
n) suggests non-separation (i.e. χ2(P⊗n

1 ||P⊗n
0 ) → 0).8

For the achievability when rn ≍ pn, we need to exhibit a test. The test statistic is quite natural
– it is the famous Kolmogorov-Smirnov goodness-of-fit test:

Tn = 1

{
√
n sup

t∈[0,1]
|Fn(t)− t| > zα

}
(39)

where Fn(t) = 1
n

∑n
i=1 1(0,t](Xi) is the empirical c.d.f., and zα is the upper α-quantile of the

distribution of supt∈[0,1] |G(t)| where G is the standard Brownian bridge. This part looks quite
involved because of that supremum in the test statistic. But later in this course, we will actually
show the indicator function belongs to the so-called Donsker class (the class functions for which
Donsker’s theorem holds). One can also develop a non-asymptotic test by using Dvoretzky-Kiefer-
Wolfowitz inequality:

P
(√
n∥Fn − F∥∞ ≥ t

)
≤ 2e−2t2 (40)

so choose t such that 2e−2t2 = α.

3.5 Property testing

Property testing is a general class of problems originated from theoretical computer science liter-
ature. Initially, computer scientists (e.g. Andrew Yao) worked on computer-aided proof checker
by testing certain clauses in the proof, which gradually evolves into testing properties. Property
testing concerns problem like testing uniformity, identity, monotonicity, junta (i.e. sparse Boolean
functions) [? ], etc.

Property testing is closely related to hypothesis testing in statistics, but the probabilistic models
are usually discrete or combinatorial and the requirement on the test statistic can be somewhat
relaxed because it is not concerned with life and death situation as real-life statistics/biostatistics
do. For a comprehensive survey, please take a look at [? ? ].

3.5.1 Uniformity testing

Uniformity testing for discrete distributions is an important primitive for property testing. Many
problems, e.g. identity testing, can be broken into simpler components which are themselves
uniformity testing. You can look at related discussions in [? ].

Consider a multinomial distribution Multinom(n, p1, · · · , pk). In theoretical computer science
community, they are interested in the following question: Can we find a test statistic such that

• If H0 : p1 = · · · = pk = 1/k, not to reject H0 with probability at least 3/4.

8The blue part was rushed through in the lecture.
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• If Ha(rn,k) : 2dTV (Multinom(1, p1, · · · , pk),Multinom(1, 1/k, · · · , 1/k)) > rn,k, reject H0 with
probability at least 3 / 4.

Note that the choice of 3 / 4 is for convenience and it can be any number between (1/2, 1). As you
can see, such requirement is somewhat relaxed compared to hypothesis testing in statistics.

Then we have the following lower bound result:

Theorem 49 (Hardness of discrete uniformity test). The minimax separation rate is at least

rn,k = Ω

(
k1/4

n1/2

)
; or in other words, to test a distribution away from uniform with distance r, we

need at least Ω(
√
k/r2) i.i.d. samples.

Proof. Again we want to construct a worst-case instance that is just close enough to uniformity. But
let us focus on the Poissonized version to avoid handling dependencies of multinomial distributions.
We create a random variable N ∼ Pois(n). Under Poissonization, the number of samples in category
j is denoted as Nj ∼ Pois(npj = n/k) under H0 uniformity. We denote this distribution as Un[k].
So H0 : U1[k].

Now let us construct the worst-case instance from non-uniform multinomials. For simplicity,
take k to be an even integer so k/2 is still an integer. We follow a similar idea to the pertur-

bation conducted in the continuous case: Generate ϵ1, · · · , ϵk/2
iid∼ Rademacher(1/2). Then for

j = 1, · · · , k/2,

N2j−1 ∼ Pois
(
n
k (1 + Crϵj)

)
, N2j ∼ Pois

(
n
k (1− Crϵj)

)
For convenience, we denote this distribution after marginalizing over the randomness of ϵ’s asMn[k].
To simplify a bit, we have

Un[k](N1 = n1, · · · , Nk = nk) =
k∏

j=1

(n/k)nje−n/k

nj !
=

(n/k)
∑k

j=1 nje−n

n1! · · ·nk!

and

Mn[k](N1 = n1, · · · , Nk = nk)

=
1

2k/2

∑
(ϵ1,··· ,ϵk/2)∈{−1,+1}k/2

Mn[k](N1 = n1, · · · , Nk = nk|ϵ1, · · · , ϵk/2)

where Mn[k](N1 = n1, · · · , Nk = nk|ϵ1, · · · , ϵk/2)

=

k/2∏
j=1

(n(1 + Crϵj)/k)
n2j−1e−n(1+Crϵj)/k

n2j−1!

(n(1− Crϵj)/k)
n2je−n(1−Crϵj)/k

n2j !

=
(n/k)

∑k
j=1 nje−n

n1! · · ·nk!

k/2∏
j=1

(1 + Crϵj)
n2j−1 (1− Crϵj)

n2j

so

Mn[k](N1 = n1, · · · , Nk = nk)
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=
(n/k)

∑k
j=1 nje−n

n1! · · ·nk!

k/2∏
j=1

{
1

2
(1 + Cr)n2j−1 (1− Cr)n2j +

1

2
(1− Cr)n2j−1 (1 + Cr)n2j

}

By construction, dTV (U1[k],M1[k]) = Cr9, which means M1[k] ∈ Ha(r). To figure out the
testability, we compute the chi-square divergence between Mn[k] and Un[k]:

χ2 (Mn[k]||Un[k])

= EMn[k]

[
dMn[k]

dUn[k]

]
− 1

= EMn[k]

k/2∏
j=1

{
1

2
(1 + Cr)N2j−1 (1− Cr)N2j +

1

2
(1− Cr)N2j−1 (1 + Cr)N2j

}− 1

=

k/2∏
j=1

EMn[k]

[{
1

2
(1 + Cr)N2j−1 (1− Cr)N2j +

1

2
(1− Cr)N2j−1 (1 + Cr)N2j

}]
− 1

=

k/2∏
j=1

1

2

1

2

∑
ϵ∈{−1,+1}

EMn[k]|ϵ

[
(1 + Cr)N1 (1− Cr)N2 + (1− Cr)N1 (1 + Cr)N2 |ϵ

]
− 1

=

k/2∏
j=1

1

4

(
Gn(1+Cr)

k

(1 + Cr)Gn(1−Cr)
k

(1− Cr) +Gn(1+Cr)
k

(1− Cr)Gn(1−Cr)
k

(1 + Cr)

+ Gn(1−Cr)
k

(1 + Cr)Gn(1+Cr)
k

(1− Cr) +Gn(1−Cr)
k

(1− Cr)Gn(1+Cr)
k

(1 + Cr)

)
− 1

=

k/2∏
j=1

1

4

(
2e

n(1+Cr)Cr
k e−

n(1−Cr)Cr
k + 2e−

n(1+Cr)Cr
k e

n(1−Cr)Cr
k

)
− 1

=

e 2n(Cr)2

k + e−
2n(Cr)2

k

2

k/2

− 1

≤
(
e

4n2(Cr)4

k2

)k/2

− 1 = e
2n2(Cr)4

k − 1

where Gλ(s) = EX∼Pois(λ)(s
X) is the probability generating function of a Poisson distribution with

mean λ which equals eλ(s−1) and the last inequality follows from ex+ e−x ≤ 2ex
2/2. So we can take

n2r4/k = Ω(1) to get n = Ω
(√

k
r2

)
.

At last, we perform de-Poissonization as in lecture1.pdf.

Remark 50.

1. What is the intuition for sample complexity being
√
k, which means on average, each category

has 1/
√
k samples, a tiny number? This is based on an intuition from the famous birthday

9Here n = 1. First, conditioning on the random signs, for each category,

dTV
(
multinom(1, p1, · · · , pk),multinom(1, k−1, · · · , k−1)

)
= Θ(r).
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problem. In its essence, it says the following:

P (no collision) =
n∏

i=1

(
1− i− 1

k

)
≤ e−

∑n
i=1

i−1
k ≍ e−

n2

k .

by “no collision”, we mean no two samples belong to the same category. When n
k = o(1), we

also have a corresponding lower bound:

P (no collision) =

n∏
i=1

(
1− i− 1

k

)
≥ e−(1+o(1))(

∑n
i=1

i−1
k

) ≍ e−
n2

k .

Therefore, when the upper and lower bounds match, we have an exact formula for “no colli-
sion” probability e−n2/k and if n2/k = O(1) i.e. n = O(

√
k). Only if this probability is higher

than some constant, we can distinguish between U1[k] versus U1[k/2], whose TV distance
is 0.5, quite large. Otherwise we only see a lot of singletons and hence cannot tell them
apart. There is actually a way to construct “worst-case” instance by constructing Un[k/2]
with additional random Rademacher multipliers. But we will not go into the detail on this
alternative construction.

2. Uniformity testing is a primitive problem in property testing. Many other testing problems
can be reduced to uniformity testing. For example, in “identity testing” (H0 : D1 = D2 vs.
Ha : d(D1, D2) > r), it is often broken into small pieces of uniformity testing.

3. Property testing has also been extended to the quantum case: see [? ].

3.6 Some final comments on hypothesis testing

Suppose you just refuse to agree that hypothesis testing can be useful in data analysis. Then why
bother to study hypothesis testing problems?

As we mentioned in the beginning of this chapter, there is a natural ordering among different
statistical problems. For example, hypothesis testing is “easier” than estimation. So there is
a natural reduction from estimation to hypothesis testing. If you are interested in estimation
problems, hypothesis testing is almost an unavoidable intermediate step. We will use such reduction
quite often in future lectures. Moreover, the type of thinking in hypothesis testing is strongly related
to many concepts in other fields, such as machine learning and cryptography. For example:

3.6.1 Hypothesis testing and differential privacy

The concept of “Differential Privacy” (DP) is invented by Cynthia Dwork [? ], who started her
career as a cryptographer. The definition is as follows:

Definition 51. Let ϵ > 0. A randomized algorithm Alg : X 7→ P(Y), where X is the input space,
Y is the output space and P(Y) is the space of probability measures on the output space Y, is ϵ-DP
if for every two datasets D0 and D1 that differs only by one individual and for every set S ⊆ Y, we
have

P (Alg(D1) ∈ S) ≤ eϵP (Alg(D0) ∈ S) (41)

uniformly.
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Remark 52. This is a very stringent requirement! I will copy the following comments from Larry
Wasserman’s lecture note on DP here (which might be a bit obsolete):

Strengths of DP:

1. DP gives a very rigorous, precise notion of privacy.

2. Many methods in machine learning and statistics can be made differentially private.

3. DP can be used for other purposes. For example, Dwork et al. 2015 [? ] (a Sci-
ence paper!) created a method called reusable holdout that allows an interactive
approach to data analysis while making repeated looks at the data without intro-
ducing too much bias. The heart of the method is to impose a sort of differential
privacy on each step of the analysis.

Weaknesses of DP:

1. DP has dominated the research in privacy. It seems that there is not much research
in other approaches.

2. DP is very strong. You need to add a lot of noise to the data.

3. When there is a structure in the data, such as voids, manifolds etc., it is destroyed
by DP.

4. I have not seen it really used in much practical data analysis.

Almost every statistical or machine learning problems can be extended to their corresponding
DP versions. DP is related to hypothesis testing in the following sense:

Theorem 53 (Wasserman and Zhou 2010 [? ]). Denote y ∈ Y as an output of an ϵ-DP randomized
algorithm Alg. Consider the following hypothesis testing problem:

H0 : y comes from Alg(D0) vs. Ha : y comes from Alg(D1).

For any rejection region S ⊆ Y of the above testing problem:

if: P(S ∋ Alg(D0))︸ ︷︷ ︸
Type I error

≤ α,

then: P(S ̸∋ Alg(D1))︸ ︷︷ ︸
Type II error

≥ 1− eϵα.

The proof is a trivial application of Definition 51 so omitted.

3.6.2 Hypothesis testing, model selection, and adaptivity

Whenever you are doing model selection, you are essentially asking a hypothesis testing question:
which model (hypothesis) cannot be rejected by the data?

An interesting direction in recent years is adaptive/interactive data analysis: the goal is to
propose a data-analytic method that is always statistically rigorous and valid but allows users to
perform all kinds of crazy analysis on data. In fact, DP has shown to be a very good strategy for
adaptive data analysis [? ].

In later lectures, we will encounter a (theoretical10) model selection method called “Lepskii’s
method”, which is essentially a multiple testing procedure.

10This is because real data application never uses Lepskii’s method.
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https://www.stat.cmu.edu/~larry/=sml/diffpriv.pdf
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