
Advanced mathematical statistics August 30, 2025

Part I. Review of Basic Probabilities

Instructor: Lin Liu

1 Plan of this semester

Our plan is to (hopefully) cover the following topics in theoretical statistics:

• Classical parametric statistics [? ? ]: including sufficiency/ancillary statistics, exponential
families, moment estimators, maximum likelihood estimation (MLE), M/Z-estimation, Le
Cam’s theory, Bernstein-von Mises theory for Bayesian inference, etc. Here the parameter
space Θ is of finite dimensional compared to the sample size n.

• Nonparametric statistics [? ? ]: minimax lower and upper bound for nonparametric statistical
problems, including both function and functional estimation. By nonparametric statistics,
we mean that the parameter space Θ is infinite dimensional. e.g. Θ = L2. Nonparametric
statistics are motivated to avoid model misspecification bias in classical parametric statistics.
Here we will also cover some high-dimensional statistics with sparsity constraint, as sparsity
constraint can be viewed as restricting the L0 norms of the Fourier coefficients of the Fourier
expansion of a function in L2.

• Semiparametric statistics [? ? ]: semiparametric efficiency and influence functions. By
semiparametric statistics, we mean that the parameter θ has two components (µ, ν), where µ
belongs to a finite-dimensional space and ν, the nuisance parameter, belongs to an infinite-
dimensional space. The parameter of interest is µ. We will use a lot of functional analysis in
this chapter.

• Some other topics: Bayesian nonparametrics [? ], robust statistics, statistical-computational
gap (if time permitted). For statistical-computational gap, we mean that the known statis-
tically optimal procedure might belong to computational complexity class like Exp or NP-
complete etc., but the known polynomial time procedure cannot achieve the statistical opti-
mality after years of effort. Such gap might be intrinsic and strong evidence can be shown
by the so-called sum-of-square (SoS) or Lasserre relaxation hierarchy [? ? ], a fascinated
topic in the intersection between mathematical statistics, theoretical computer science and
real algebraic geometry.

The above plan is for last year. I might change the above plan as we go along.

2 Review of some basic probabilistic facts

Note 1. I choose not to develop expectations in a more measure-theoretically rigorous way in
this class due to time limit. Several very good references (at least to me) in this regard are David
Pollard’s “A user’s guide to measure theoretical probability” (as a statistician), Patrick Billingsley’s
“Probability and Measure” (as a mathematician) or Amir Dembo’s lecture notes (as an applied
probabilist). I highly recommend Chapter 1 and Chapter 4 of Dembo’s notes for self-studying
because he develops everything in a fast pace.
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2.1 Expectation, variance, covariance, and moment

X is a random variable and X ∼ PX , where PX denotes the probability distribution function/prob-
ability measure. In undergraduate statistics courses, we usually define expectations/moments of X
through probability density/mass function (provided that it exists) by

E(X) :=

∫
xfX(x)dx.

If fX(x) is a p.d.f., this integral is taken with respect to (w.r.t.) the Lebesgue measure, whereas if
fX(x) is a p.m.f., this integral is taken with respect to the counting measure of a discrete probability
distribution.

But a more general way of defining expectation is the following

E(X) :=

∫
xdFX(x)

where FX is the c.d.f. because the c.d.f. always exists, unlike p.d.f. or p.m.f. Or if you really want
to be measure-theoretically rigorous, expectation can be defined as

E(X) :=

∫
Ω
X(ω)PX(dω)

where the integral is taken w.r.t. the probability measure PX over the sample space Ω. However, to
really understand the meaning of the above definition, a measure-theory based probability course
is needed.

Note 2. Another common identity is the following (in case you haven’t seen it): denote the c.d.f.
of X as FX(x) ≡ P (X ≤ x). We can define c.d.f. using expectation by introducing the indicator
function

1{X ∈ A} :=

{
1 X ∈ A
0 Otherwise.

Then FX(x) ≡ E [1{X ≤ x}].
In mathematical analysis, 1{X ∈ A} is called characteristic function [? ]. But because charac-

teristic function has another meaning in probability, we rename it as the indicator function.

For instance, in measure-theoretic probability, we often start with a probability space (Ω,F , P )
with Ω the sample space, F a σ-algebra on Ω, and P a probability measure. The reason that we
need a σ-algebra rather than an algebra is we need to operate on union/intersection of countably
many rather than finitely many sets in probability theory. We can subsequently define a random
variable X ≡ X(ω) as a measurable mapping X : Ω → X from the sample space Ω to the random
variable space X. Again, the random variable space should also be a measurable space, equipped
with a σ-algebra X and written as a tuple (X,X ). The most common random variable space will
be (R,B), where R denotes the field of real numbers and B the Borel σ-algebra, i.e. σ-algebras
generated from open sets in X, which are open intervals when X = R.

Variance, covariance and moment can be similarly defined based on expectation. We have the
following:
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Definition 3. An r-th moment of a r.v. X ∼ PX is E (Xr), if it exists. Variance is the central
second moment: var (X) := E{(X − E(X))2}. Covariance between two r.v.s X1, X2 is defined
as cov (X1, X2) := E{(X1 − E(X1)) (X2 − E(X2))}. When X1 = X2 = X almost surely (with
probability 1 [w.p.1]), cov(X1, X2) ≡ var (X).

For variance and covariance, we also have the following useful identities:

Fact 1.

var (X) ≡ E
(
X2
)
− {E (X)}2,

cov (X1, X2) ≡ E (X1X2)− E (X1)E (X2) .

2.1.1 Expectation is a linear operator/functional

Expectation is a linear operator/functional: for two random variables X1 ∼ PX1 , X2 ∼ PX2 ,
E(aX1 + bX2) = aE(X1) + bE(X2) for a, b ∈ R (here the left hand side [LHS] expectation is
to be understood as taken w.r.t. the joint distribution of X1, X2). In this class, a “functional” sim-
ply means a measurable map L : F → Rm, where F is some normed function space, e.g. a Hilbert
space like L2. A linear functional further requires L(f1 + f2) = L(f1) + L(f2) and L(cf) = cL(f),
where c ∈ R, f, f1, f2 ∈ F .

Note 4. One question you can think about now is whether

E

( ∞∑
i=1

Xi

)
=

∞∑
i=1

E (Xi)?

We will come back to this later in this course. Unlike the measure theoretical aspects that I try to
down-tone, whether integral and limit can be exchanged will be done more carefully.

However, variance is not “linear”. Variance can be viewed as a “quadratic functional”, which
we might discuss in later lectures.

var (X1 ±X2) = var (X1) + var (X2)± 2cov (X1, X2) .

If cov (X1, X2) = 0 (e.g. implied by X1 ⊥⊥ X2 [⊥⊥ denotes independence]), then

var (X1 ±X2) = var (X1) + var (X2) .

In general, we can still control (i.e. upper bound) variance without computing covariance. The
following inequality turns out to be quite useful in research, because we sometimes only need a
bound on the variance rather than its exact value.

var (X1 ±X2) ≤ 2var (X1) + 2var (X2)

the proof of which follows from the trivial inequality (a± b)2 ≤ 2a2 + 2b2.
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2.1.2 Geometric interpretation of expectation and variance

We have the following variational characterization of expectation and variance:

Proposition 1. If E(X2) < ∞,

var (X) ≡ min
c∈all constant functions

E (X − c)2 and E (X) ≡ arg min
c∈all constant functions

E (X − c)2

Proof. Take derivative w.r.t. c and solve c such that the derivative is zero. You will find c = E (X).
Then evaluate the second derivative at c = E (X), and it should be nonnegative.

Remark 5. By Proposition 1, we have the following geometric interpretation of E (X): E (X) is
the L2(PX)-projection of the r.v. X onto the space of all constant functions {c}, i.e. the closest
constant c to X in L2(PX) distance between X and c, i.e. {E (X − c)2}1/2.

3 Conditioning

Conditioning is the heart and soul of statistics – almost every statistical analysis is conditioning on
something, e.g. assumptions, and sometimes data. Conditional probability distribution functions
or conditional probability measures, however, are more trickier to define than their marginal coun-
terpart. In fact, people have argued that this is the reason why measure theory should be used in
probability.

As we have seen in the previous section, probability distribution/measure can be defined by
taking expectation over an indicator function, we only consider conditional expectation in this
section.

Unfortunately, because we do not have enough time to cover all the measure theoretical issues,
we content ourselves with the following definition which does not rely on the existence of p.d.f.
or p.m.f. and requires minimal knowledge on measure theory (Lebesgue decomposition theorem,
Radon-Nikodym [i.e. change of measure]). For rigorous development, please read Chapter 4 of
Amir Dembo’s lecture notes (if you haven’t seen measure theory yet, you also need to read Chapter
1). First, consider two random variables X and Y with joint distributed with distribution function
PX,Y .

Definition 6. The conditional expectation E[Y |X] is the almost surely (w.p.1.) unique function
g(X) that uncorrelates the residual Y − g(X) from all measurable functions h(X) of X, i.e.

E {(Y − g(X))h(X)} = 0.

Note however that this definition is not constructive. But it has all the properties that a
conditional expectation needs to satisfy. For the sake of understanding, we can check if the above
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definition is true if the conditional p.d.f.’s of Y |X = x exist.

E [(Y − E(Y |X))h(X)] =

∫ ∫
yh(x)fX,Y (x, y)dxdy −

∫
E(Y |X = x)h(x)fX(x)dx

=

∫ ∫
yh(x)fX,Y (x, y)dxdy −

∫ {∫
yfY |X(y|X = x)dy

}
h(x)fX(x)dx

=

∫ ∫
yh(x)fX,Y (x, y)dxdy −

∫ ∫
yh(x)fY |X(y|X = x)fX(x)dydx

=

∫ ∫
yh(x)fX,Y (x, y)dxdy −

∫ ∫
yh(x)fX,Y (x, y)dydx

= 0.

Note 7. E[Y |X] is a random variable, but there is no randomness in E[Y |X = x].

Based on Definition 6, we can prove the following properties of conditional expectation:

Proposition 2.

1. E[Y |X] is unique almost surely.

2. E (k(X)Y |X) = k(X)E (Y |X)

3. Tower law E (Y ) = E (E (Y |X))

4. var (Y ) = E (var (Y |X)) + var (E (Y |X))

5. cov (Y1, Y2) = E (cov (Y1, Y2|X))+cov (E (Y1|X) ,E (Y2|X)) and cov (X,Y ) = cov (X,E (Y |X)).

Note 8. In class, I wrote in Definition 6 “all bounded and measurable functions h. . . ”. After
class, a student asked whether boundedness is necessary for (2). It is not necessary to assume
boundedness but it is also not wrong to add “boundedness”. Boundedness implies the existence
E [(Y − E(Y |X))h(X)] for measurable h by the usual “4-step” strategy in a measure-theoretic
proof, that is: first show existence by simple functions i.e. indicator functions, second by linear
combination of simple functions, third by taking limit to include all positive measurable functions
and fourth by decomposing a measurable function h = h+−h− into a positive part h+ and negative
part h− (note that h− ≥ 0). Again, for better reference, you should read Amir Dembo’s lecture
notes if interested.

Proof.

1. Suppose two different functions g1(X) and g2(X) satisfy the conditions given in Definition 6.
Then

E {g1(X)h(X)} = E {g2(X)h(X)}
⇒E {(g1(X)− g2(X))h(X)} = 0

Take h=sign(g1−g2)⇒ E {|g1(X)− g2(X)|} = 0.

Since |g1(X) − g2(X)| ≥ 0, |g1(X) − g2(X)| = 0 almost surely, i.e. g1(X) = g2(X) almost
surely.
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2. Define h′(X) = h(X)k(X). Then

E {(k(X)Y − k(X)E (Y |X))h(X)}
= E {(Y − E (Y |X)) k(X)h(X)}
= E

{
(Y − E (Y |X))h′(X)

}
= 0

by definition of E (Y |X).

3. By Definition 6 with h(x) ≡ 1

E {(Y − E(Y |X))} = 0 ⇔ E (Y ) = E (E (Y |X)) .

4.

var (Y ) = E
(
Y 2
)
− {E (Y )}2 = E

(
E
(
Y 2|X

))
− {E (Y )}2

= E
[
var (Y |X) + {E (Y |X)}2

]
− {E (Y )}2

= E [var (Y |X)] + E
[
{E (Y |X)}2

]
− {E (Y )}2

= E [var (Y |X)] +
{
var [E (Y |X)] + [E (E (Y |X))]2

}
− {E (Y )}2

= E [var (Y |X)] +
{
var [E (Y |X)] + {E (Y )}2

}
− {E (Y )}2

= E [var (Y |X)] + var [E (Y |X)] .

From the calculations above, you probably see more easily why I can take EY = 0 w.l.o.g. in
class.

5. Left as exercise.

Finally, similar to expectation, we give the following geometric interpretation of conditional
expectations.

Proposition 3. Let X and Y be jointly distributed with EY 2 < ∞. Then the random variable
g(X) that minimizes the mean squared error (MSE) E (Y − g(X))2 of predicting Y is E (Y |X).

Proof. Hint: using Tower law E (Y − g(X))2 = E
{
E
[
(Y − g(X))2 |X

]}
.

MSE is one of the most important quantity in statistics and machine learning because it has
the following interpretable decomposition:

MSE(g(X), Y ) = E (Y − g(X))2 = E (Y − E (Y |X) + E (Y |X)− g(X))2

= E
[
E
{
(Y − E (Y |X))2 |X

}
+ {E (Y |X)− g(X)}2

]
= E

[
var (Y |X) + {E (Y |X)− g(X)}2

]
.

Thus MSE = Var + Bias2. In many regression/supervised machine learning problems, MSE is the
target loss function. By minimizing the MSE, we at least try to minimize both variance and bias
of using g(X) to predict Y at the same time, and in principle we are hoping that the algorithm will
neither overfit (undersmooth) nor under-fit (oversmooth).
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Note 9. It is also the squared L2(PX,Y )-distance between Y and g(X).

Note 10. Sometimes, in particular when Y |X = x has heavy tails, conditional expectation is
no longer of interest because mean does not represent the majority of the population. There we
sometimes try to minimize the absolute mean deviation instead: E|Y − g(X)| and the minimizer is
the conditional median of Y given X, which is the so-called median regression. However, compared
to MSE, absolute mean deviation is not easy to solve computationally. Therefore computation
becomes one of the central topics in statistics or econometrics research on median regression, or
quantile regression in general [? ]. It also has some interesting connection with optimal transport
[? ].

4 (Conditional) independence

Definition 11. X1, . . . , Xn are independent iff their joint c.d.f. factorizes into the product of each
marginal c.d.f. i.e.

FX1,...,Xn(x1, . . . , xn) = FX1(x1) . . . FXn(xn)

for all x1, . . . , xn.

Conditional independence can be defined similarly.
If X1 ⊥⊥ X2, then cov(X1, X2) = 0; but the reverse direction is not necessarily true. When

(X1, X2) is jointly normally distributed, then cov(X1, X2) = 0 implies X1 ⊥⊥ X2. For this reason,
people studying statistical inference on graphical models (in which no edge between two vertices
means independence/conditional independence) often study Gaussian graphical models.

Similarly, if X1 ⊥⊥ X2, E(X1|X2) = E(X1).
With independence in mind, we can be creative in our calculations or proofs. In particular, we

can rewrite variance formula as follows: for a r.v. X ∈ PX , create an independent copy X ′ of X.
Then

var (X) ≡ E
(
X2
)
− {E (X)}2 ≡ 1

2

{
2E
(
X2
)
− 2{E (X)}2

}
=

1

2

{
E
(
X2
)
+ E

(
X ′2)− 2E (X)E

(
X ′)} =

1

2
E
(
X −X ′)2 .

Recall that the sample variance of X1, . . . , Xn
i.i.d.∼ PX is

Ŝ =
1

n− 1

n∑
i=1

(Xi − X̄)2, with X̄ =
1

n

n∑
i=1

Xi,

which is an unbiased estimator of var (X). With this “new” formula of variance, we can come up
with a “different” variance estimator:

Ŝ′ =
1

2n(n− 1)

∑
1≤i1 ̸=i2≤n

(Xi1 −Xi2)
2

which is a second-order U -statistic. Because Xi1 ⊥⊥ Xi2 , it is obvious that Ŝ′ is also an unbiased
estimator of var(X). Actually you can show, after some algebra, that Ŝ′ ≡ Ŝ. If you want
to compute Ŝ′ in computer exactly following its U -statistic formula, it takes O(n2) summations.
However, Ŝ only takes O(n) summations. The quadratic vs. linear time computation will make a
difference in the world of big data.
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Remark 12. When sample size is large, the sample variance and 1
n

∑n
i=1(Xi− X̄)2 are almost the

same. Division by n − 1 rather than n to make Ŝ an unbiased estimator of var(X) is due to the
correlation between X̄ and Xi for i = 1, . . . , n.

Creating an independent copy has very strong statistical flavor, and is called “exchangeable
pair” or “replica” trick. This trick is probably the most important statistical contribution to
pure mathematics: many novel proofs for central limit theorems (CLT) (i.e. Stein’s method) and
concentration inequalities are developed using this trick [? ].

5 Generating functions

We first define the moment generating function (MGF) of a r.v. X ∼ PX . MGF is another way of
determining distributions, in addition to the c.d.f. It is also powerful for deriving distributions for
convolution i.e. X + Y and moments (from its name).

Definition 13. A r.v. X has a MGF if M(t) = EetX < ∞ for t in an open interval containing 0.

MGF does not always exist. For example, if X is log-normally distributed, then its MGF does
not exist, although all of its moments exist. To see this, X = eZ with Z ∼ N(0, 1). Then when
t > 0

E
(
etX
)
=

∫ ∞

0
etx

1

2πx
e−(log(x))2/2dx ≥ c

∫ ∞

t

1

x
dx = log(x)|∞c = ∞

where given some c > 0, t is chosen such that for all x ≥ t, etx 1
2πe

−(log(x))2/2 > c.

Fact 2. For two r.v.s. X1, X2, if they have the same MGF M(t) in some open neighborhood of 0,
then X1 ∼ X2.

Fact 3. MGF, if it exists, is a convex function of t.

Theorem 14. If X has an MGF M(t), then E(Xm) ≡ M (m)(0), where M (m)(0) is the m-th
derivative of M(t) with t evaluated at 0.

Theorem 15. If X1 ⊥⊥ X2, MX1+X2(t) = MX1(t)MX2(t).

MGF can be viewed as the “Laplace transformation” of the probability distribution. Just like
MGF, Laplace transformation does not always exist. But if we expand our field from R to C
(the field of complex numbers), we have Fourier transformation that always exists, which gives us
characteristic function (CF) C(t) = EeitX , where i =

√
−1. CF also uniquely determines probability

distributions, following from classical Fourier analysis.
The most fundamental proof idea for CLT is by showing the CF of sample average converges

to that of a normal.

6 Important functional inequalities

Proposition 4 (Jensen’s inequality). Let f be a convex (concave) function. Then E (f(X)) ≥
f (E(X)) (E (f(X)) ≤ f (E(X))).
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Proof. “Proof” by picture is good enough in this case and it helps you remember the direction of
the inequality.

But if you are interested, a rigorous proof can be done by invoking the “supporting hyperplane
theorem” because here we only assume f to be convex rather than continuous or differentiable (if
so, we can use Taylor expansion). WLOG, let’s consider 1d case. For any convex function f , at
any point (x, g(x)), there exists a supporting line going through the point (x, f(x)) and lying below
the graph of f . Let µ = EX. Denote L(x) = a + bx as the supporting line at (µ, f(µ)). Thus
f(x) ≥ a+ bx. Taking expectation on both sides, we have

Ef(X) ≥ a+ bµ = L(µ) = f(µ) = f(E(X)).

Jensen’s inequality can be used to prove the following corollary:

Corollary 1. Arithmetic mean (AM) ≥ Geometric mean (GM) ≥ Harmonic mean (HM) over
positive variables.

Proof. Take two variables x, y > 0 and p, q ∈ [0, 1] s.t. p+ q = 1. Then arithmetic mean is px+ qy,
the geometric mean is xpyq and the harmonic mean is 1

p/x+q/y . Thus you can think of a random
variable W = x w.p. p and W = y w.p. q.

Notice that log(x) is a concave function on [0,∞). Then E (log(W )) ≤ log(E(W )) by Jensen,
i.e. p log(x) + q log(y) ≤ log(px+ qy) ⇔ xpyq ≤ px+ qy, hence AM ≥ GM.

Again notice that log(x) is a concave function on (0,∞). Then E (log(1/W )) ≤ log(E(1/W ))
by Jensen, i.e. p log(1/x) + q log(1/y) ≤ log(p/x+ q/y) ⇔ x−py−q ≤ p

x + q
y ⇔ xpyq ≥ 1

p
x
+ q

y
, hence

GM ≥ HM.

Proposition 5 (Cauchy-Schwarz inequality).

|E (XY )| ≤
{
E
(
X2
)}1/2 {E (Y 2

)}1/2
Note 16. Cauchy-Schwarz inequality is arguably the most important inequality in mathematics.
We give a variational proof below.

Proof. Trivially, we have E (X − cY )2 ≥ 0 for any c ∈ R. Hence minc∈RE (X − cY )2 ≥ 0, with

c = E(Y 2)
E(XY ) achieving the minimum. Plugging in c, we have |E (XY ) |2 ≤ E(X2)E(Y 2).

6.1 Fortuin-Kasteleyn-Ginibre (FKG) Inequality

Proposition 6. X is an random variable and g, h are monotonically increasing functions. Then
we have cov(g(X), h(X)) ≥ 0

Proof. We assume that there are two random variables X ′ ⊥⊥ X, X,X ′ ∼ Px. (Replica trick)
g, h are monotonically increasing functions⇒ (g(X)− g(X ′))(h(X)− h(X ′)) ≥ 0.

E
{
(g(X)− g(X ′))(h(X)− h(X ′))

}
≥ 0

⇒ Eg(X)h(X) + Eg(X ′)h(X ′)− Eg(X)h(X ′)− Eg(X ′)h(X) ≥ 0

⇒ 2Eg(X)h(X)− 2Eg(X)Eh(X) ≥ 0

The final inequality holds because of independence and identical distribution of X and X ′

1-9



6.2 Norm of random variables

The Lr(1 ≤ r ≤ ∞) norm of random variables can be defined as following:

||X||r = [E|X|r]
1
r , 1 ≤ r < ∞

||X||∞ = inf {C ≥ 0, P (|X| > C) = 0}

Note 17. It is important to show that triangle inequality holds for ||X||r. Minkowski inequality
(which will be discussed later) is applied when 1 ≤ r < ∞. When r = ∞,we have the following
proposition:

Proposition 7. ||X1 +X2||∞ ≤ ||X1||∞ + ||X2||∞

Proof. Let C1 = ||X1||∞, C2 = ||X2||∞, C∗ = C1 + C2.

P (|X1 +X2| > C∗) ≤ P (|X1 + |X2| > C∗)

= P (|X1 + |X2| > C∗, |X2| ≤ C2) + P (|X1 + |X2| > C∗, |X2| > C2)

≤ P (|X1| ≥ C1) + P (|X2| ≥ C2) = 0.

Thus, C∗ ∈ {C ≥ 0, P (|X1 +X2| > C) = 0} ⇒ ||X1 +X2||∞ ≤ C∗ = ||X1||∞ + ||X2||∞

Remark 18. The red formula in the above proof is a very useful ‘event decomposition’ strategy
when bounding probabilities. Separate event {|X1 + |X2| > C∗} into ’bad’ event {|X1 + |X2| > C∗, |X2| ≤ C2}
and ’good’ event {|X1 + |X2| > C∗, |X2| > C2}. For ’bad’ event we can bound the probability by
{|X1| ≤ C1} because X1 + |X2| > C∗, |X2| ≤ C2 ⇒ |X1| > C∗ − C2 = C1

6.3 Hölder Inequality

Proposition 8. If r, s ≥ 1 are conjugate exponent, that is 1
r + 1

s = 1, then the random variables
X ∈ Lr(i.e.E|X|r < ∞) and Y ∈ Ls satisfy:

|EXY | ≤ ||X||r||Y ||s

When r = s = 2, it is Cauchy Schwarz Inequality.

Proof. Let p = 1/r, q = 1/s, p + q = 1, then |XY | = (|X|r)p(|Y |s)q ≤ p|X|r + q|Y |s (which is also
called ‘Young’s Inequality’). Let X† = X

||X||r , Y
† = Y

||Y ||s . Then from Young’s inequality we have

|X†Y †| ≤ p|X†|r + q|Y †|s.

E|X†Y †| ≤ pE|X†|r + qE|Y †|s = p||X†||rr + q||Y †||ss = p+ q = 1

⇒E|X†Y †| ≤ 1 ⇒ E|XY | ≤ ||X||r||Y ||s

1-10



6.4 Minkowski Inequality

Proposition 9. For any 1 ≤ r < ∞ and any random variables X,Y ∈ Lr, we have:

||X + Y ||r ≤ ||X||r + ||Y ||r

Proof. When r = 1, it is obvious that ||X + Y ||1 = E|X + Y | ≤ E|X|+ E|Y |.
When r > 1 , we used a proof idea called ‘bootstrapping’ from simple case r = 1 to general

case r ≥ 1:

||X + Y ||rr = E|X + Y |r = E|X + Y ||X + Y |r−1

≤ E|X||X + Y |r−1 + E|Y ||X + Y |r−1

= E|X||Z|+ E|Y ||Z| = ||XZ||1 + ||Y Z||1 (LetZ = |X + Y |r)
≤ ||X||r||Z||s + ||Y ||r||Z||s

||Z||s =
{
E[|X + Y |r−1]s

} 1
s = {E|X + Y |r}1−

1
r = ||X + Y ||r−1

r

⇒ ||X + Y ||rr ≤ ||X||r||X + Y ||r−1
r + ||Y ||r||X + Y ||r−1

r

⇒ ||X + Y ||r ≤ ||X||r + ||Y ||r

Note 19. Considering the situation that 0 < r < 1, we define a ‘pseudo norm’: |||X|||r = [E|X|r]
1
r .

Because of the difference between concavity and convexity, pseudo norm does not satisfy triangle
inequality. However, we have following properties:

|||X + Y |||r ≥ |||X|||r + |||Y |||r
|||X + Y |||r ≤ 2

1
r
−1 [|||X|||r + |||Y |||r]

for X,Y random variables satisfying P (X ≥ 0) = 1 or P (X ≤ 0) = 1 and P (Y ≥ 0) = 1 or
P (Y ≤ 0) = 1.

Proof. 1. First inequality. Take δ := |||X|||r/ (|||X|||r + |||Y |||r).

|||X + Y |||rr = E|X + Y |r = E
∣∣∣∣δXδ + (1− δ)

Y

1− δ

∣∣∣∣r
≥ E

{
δ

∣∣∣∣Xδ
∣∣∣∣r + (1− δ)

∣∣∣∣ Y

1− δ

∣∣∣∣r} due to Jensen

= δ|||X|||rrδ−r + (1− δ)|||Y |||rr(1− δ)−r

= δ (|||X|||r + |||Y |||r)r + (1− δ) (|||X|||r + |||Y |||r)r

= (|||X|||r + |||Y |||r)r

⇒ |||X + Y |||r ≥ |||X|||r + |||Y |||r.
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2. Second inequality.

|||X + Y |||rr = E|X + Y |r = E
{
|X + Y |r |X|

|X|+ |Y |
+ |X + Y |r |Y |

|X|+ |Y |

}
≤ E|X|r + E|Y |r ≡ |||X|||rr + |||Y |||rr due to |X + Y | ≤ |X|+ |Y |

⇒ |||X + Y |||r ≤ {|||X|||rr + |||Y |||rr}
1/r

= 21/r
{
1

2
|||X|||rr +

1

2
|||Y |||rr

}1/r

≤ 21/r
1

2
(|||X|||r + |||Y |||r) due to Jensen

= 21/r−1 (|||X|||r + |||Y |||r) .

6.5 Other important results

• ||X||p ≤ ||X||s, 1 ≤ p ≤ s ≤ ∞

Proof. Let Y = |X|p, Z = 1 then E|X|p = E|Y Z| ≤ ||Y ||p′ ||Z||s′ , 1/p′ + 1/s′ = 1. Let
p′ = s

p , s
′ = 1

1−1/p′ , then

||Y ||p′ = E
{
[|X|p]

s
p

} p
s
= E[|X|s]

p
s = ||X||ps

⇒ ||X||pp ≤ ||X||ps ⇒ ||X||p ≤ ||X||s

Note 20. This inequality can be also proven by Jensen’s inequality (let f(x) = x
s
p , which is

a convex function when 1 ≤ p ≤ s ≤ ∞).

• Suppose p ≥ 1, then ||E(Y |X)||p ≤ ||Y ||p. (Informally: ‘projections’ contracting norm)

Proof.

||E(Y |X)||pp = E[|E(Y |X)|p]
≤ E[E(|Y |p|X)] = E|Y |p = ||Y ||pp (Jensen)

• X is a random variable with mean µ, standard deviation σ and median m. Then we have
|µ−m| ≤ σ

Proof.

|µ−m| = |E(X −m)| ≤ E|X −m| (Jensen)

≤ E|X − µ| ≤ σ (Variational interpretation of median)
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• Kullback Leibler (KL) divergence: f(x), g(x) are two density functions. D(f(x)||g(x)) =∫
R log f(x)

g(x)f(x)dx, D(f(x)||g(x)) ≥ 0

Proof.

D(f(x)||g(x)) = Ef

(
− log

g(x)

f(x)

)
≥ − logE

g(x)

f(x)
(Jensen)

= − log

(∫
R

g(x)

f(x)
f(x)dx

)
= 0 (property of density)

One of the most powerful functional inequalities is the Brascamp-Lieb inequality, which sub-
sumes most of the above functional inequalities.

7 Different modes of stochastic convergence

For convergence in distribution (in law), convergence in probability, and convergence almost surely,
you can check Larry Wasserman’s lecture notes 4, 5, and 6 if unfamiliar with these concepts.

7.1 Exercises on op and Op notation

Pattern: under moment conditions on X, denote µ = EX and σ2 = varX. X̄ − µ = op(1) =
Op(n

−1/2) where X̄ = n−1
∑n

i=1Xi and
√
n(X̄ − µ) = Op(1).

Exercises:

(1) ω(1)
√
n(X̄ − µ) ̸= Op(1)

(2) say X(n) is a random variable indexed by n with mean 0 and variance 1/ log n. Let X̄(n) =

n−1
∑n

i=1X
(n)
i .

√
n(X̄(n) − µ) =?

(3)

We start this section by considering several important theorems in real analysis that are adapted
to the probability case: Note that my proof might not be super rigorous.

Theorem 21 (Bounded convergence theorem (BCT)). For a sequence of random {Xn}, |Xn| ≤ C

for some constant C > 0 almost surely. If Xn
p→ X for some random variable X, then limn EXn =

EX.

Proof. For convenience, we denote X = limnXn. First, we show that X is also bounded by C
almost surely. Take any ϵ > 0,

P(|X| > C + ϵ) = P(|X −Xn +Xn| > C + ϵ)

≤ P(|X −Xn|+ |Xn| > C + ϵ)

= P(|X −Xn|+ |Xn| > C + ϵ, |Xn| ≤ C) + P(|X −Xn|+ |Xn| > C + ϵ, |Xn| > C)

≤ P(|X −Xn| > ϵ) + P(|Xn| > C)

= P(|X −Xn| > ϵ) + 0

→ 0 as n → ∞ by Xn
p→ X.
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Given the above result,

|EXn − EX| ≤ E|Xn −X|
= E|Xn −X|1{|Xn −X| > ϵ}+ E|Xn −X|1{|Xn −X| ≤ ϵ}
≤ 2CP(|Xn −X| > ϵ) + ϵ.

The first term converges to 0 and ϵ can be arbitrarily small.

Theorem 22 (Monotone convergence theorem (MCT)). If X1 ≤ X2 ≤ · · · and Xn
p→ X, then

limn EXn = EX.

Proof. We first assume EX < ∞. Since Xn is monotonically non-decreasing, Xn ↑ X in probability,
so EXn ≤ EX which gives us lim supn EXn ≤ EX.

For the other direction, we will use a truncation argument. Take bounded W ≤ X but EW ≥
EX − ϵ for any given ϵ > 0. Now truncate Xn by Wn = Xn ∧W ≡ min{Xn,W}. Then

P(|Wn −W | > ϵ) = P(|Wn −W | > ϵ,Xn ≤ W ) + P(|Wn −W | > ϵ,Xn > W )

= P(|Xn −W | > ϵ,Xn ≤ W ) + P(|W −W | > ϵ,Xn > W )︸ ︷︷ ︸
≡0

= P(|Xn −W | > ϵ,Xn ≤ W )

≤ P(|Xn −X| > ϵ,Xn ≤ W )

≤ P(|Xn −X| > ϵ) → 0.

So Wn
p→ W . Now by BCT, and Xn ≥ Wn

E[Xn] ≥ E[Wn] → E[W ] ≥ E[X]− ϵ

so lim infn E[Xn] ≥ E[X] which together with lim supn EXn ≤ EX, gives limn EXn = EX.
If EX = ∞. Take W ≤ X but EW ≥ c for any constant c > 0. Replacing EX by c in the above

analysis, we get

lim inf
n

E[Xn] ≥ c.

Since c can be taken arbitrarily large, we have lim infn E[Xn] = ∞.

Theorem 23 (Fatou’s lemma). X1, X2 · · · nonnegative random variables. Then

lim inf
n

E[Xn] ≥ E[lim inf
n

Xn]

Proof. Define Y = lim infnXn and Yn = inf{Xm : m ≥ n}. Then Yn
p→ Y and Yn monotonically

non-decreasing. So by MCT, EYn → EY . But we know EYn ≤ EXn, so E[lim infnXn] ≡ EY =
lim infn EYn ≤ lim infn EXn.

Theorem 24 (Dominated convergence theorem (DCT)). A sequence of random variables {Xn}
such that Xn

p→ X and |Xn| ≤ W for all n, for some random variable W with EW < ∞. Then
limn EXn = EX.
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Proof. |Xn| ≤ W is equivalent to −W ≤ Xn ≤ W equivalent to (1) −Xn + W ≥ 0 and (2)
Xn +W ≥ 0. By (1), we have, using Fatou’s lemma,

lim inf
n

E[−Xn +W ] ≥ E[lim inf
n

−Xn︸ ︷︷ ︸
−X

+W ]

⇒ lim inf
n

E[−Xn] ≥ E[−X]

⇒ lim sup
n

E[Xn] ≤ E[X].

By (2) and Fatou’s lemma,

lim inf
n

E[Xn +W ] ≥ E[lim inf
n

Xn︸ ︷︷ ︸
X

+W ]

⇒ lim inf
n

E[Xn] ≥ E[X].

Combining the above two, we have limn EXn = EX.

Given the above machinery from real analysis, we can answer the question when can we write

E

[ ∞∑
n=1

Xn

]
=

∞∑
n=1

E[Xn]?

Theorem 25 (Fubini-Tonelli theorem).

(1) Tonelli: If X1, X2, · · · ≥ 0, then E [
∑∞

n=1Xn] =
∑∞

n=1 E[Xn].

(2) Fubini: If
∑∞

n=1 E|Xn| < ∞, then E [
∑∞

n=1Xn] =
∑∞

n=1 E[Xn].

Proof. Define Yn =
∑n

i=1Xi and Y =
∑∞

i=1Xi.

(1) Tonelli: By non-negativity of the random variables, Yn ↑ Y . Using MCT, we have

lim
n

E[Yn] = E[Y ].

(2) Fubini: |Yn| ≤
∑n

i=1 |Xi| ≤
∑∞

i=1 |Xi|. By Tonelli theorem and non-negativity of the absolute
values, we have

E

[ ∞∑
i=1

|Xi|

]
=

∞∑
i=1

E|Xi| < ∞.

So Yn satisfies the assumptions in DCT, we have limn E[Yn] = E[Y ].

If you encounter situations violating the assumptions of Fubini-Tonelli, then just be careful in
your analysis. But because they are only sufficient conditions, violating these assumptions does
not necessarily rule out the possibility of interchanging expectation and infinite sum. So you still
have a chance that the analysis turns out to be simple.

I did not cover the following Borel-Cantelli lemma in class, but it can be quite useful when one
does analysis. I believe your probability class will also cover this important lemma.
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Theorem 26 (Borel-Cantelli lemma).

(1) If
∑∞

n=1 P(An) < ∞, then P (lim supnAn) = 0.

(2) If
∑∞

n=1 P(An) = ∞ and A1, A2, · · · are independent, then P (lim supnAn) = 1.

Proof.

(1)
∑∞

n=1 P(An) < ∞ ⇒ limn
∑∞

k=n P(Ak) = 0 because a convergent series must have tail with
limit 0. Thus

P
(
lim sup

n
An

)
= P

( ∞⋃
k=n

Ak, ∀ n

)
Fix some n

≤ P

( ∞⋃
k=n

Ak

)

but the latter converges to 0.

Remark 27. The converse is not true. Define N =
∑∞

n=1 1An . Suppose P(N = n) = c/n2

for n > 1. Then P (N < ∞) = 1 but
∑∞

n=1 P(An) = EN =
∑∞

n=1
c
n2n = ∞.

(2) Define Bn,N :=
N
∪

k=n
Ak and Bn :=

∞
∪

k=n
Ak. Then Bc

n,N =
N
∩

k=n
Ac

k and Bn,N ⊆ Bn, which implies

P(Bn,N ) ≤ P(Bn). Then

1− P
(

∞
∪

k=n
Ak

)
= 1− P(Bn) ≤ 1− P(Bn,N ) = P(Bc

n,N )
independency

=
N∏

k=n

P(Ac
k)

=
N∏

k=n

(1− P(Ak)) ≤ exp

{
−

N∑
k=n

P(Ak)

}
.

Hence

1− P
(

∞
∪

k=n
Ak

)
≤ lim

N→∞
exp

{
−

N∑
k=n

P(Ak)

}
= exp

{
−

∞∑
k=n

P(Ak)

}
= 0.

Thus for any n, P
(

∞
∪

k=n
Ak

)
= 1 which further implies limn P

(
∞
∪

k=n
Ak

)
= 1. Finally, by BCT,

lim
n

P
(

∞
∪

k=n
Ak

)
= P

(
∞
∩

n=1

∞
∪

k=n
Ak

)
= 1.

Remark 28. Recall that lim supnAn :=
∞
∩

n=1

∞
∪

k=n
Ak and lim infnAn :=

∞
∪

n=1

∞
∩

k=n
Ak. People usually

interpret lim supnAn as An occurring infinitely often (i.o.) and lim infnAn as An occurring for
all but finitely many n’s. I don’t feel these two interpretations are easy for me to understand. I
will simply look at the above set-based definitions: for lim supnAn, it is “for all n, at least one of
{An, An+1, · · · } must happen”; for lim infnAn, it is “at least for one n, all of {An, An+1, · · · } must
happen”.
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Borel-Cantelli lemma has an important corollary, which is the celebrated Kolmogorov’s 0-1 law.

Corollary 2 (Kolmogorov’s 0-1 law). {An} a sequence of independent events, then either P(lim supnAn) =
0 or P(lim supnAn) = 1.

Finally, we introduce the concept of weak convergence of probability measures.

Definition 29. A sequence of probability measures {Pn} is said to weakly converge to a probability
measure P on the sample space X, denoted as Pn ⇒ P, if Pnf → Pf , as n → ∞, for any f ∈ Cb(X),
the space of all bounded and continuous functions on X.

There is an important portmanteau lemma providing useful tools of proving weak convergence.
Note that portmanteau lemma holds for any metric space (X, ∥ · ∥).

Lemma 30 (Portmanteau lemma for weak convergence of probability measures). The following
are equivalent.

1. Pn ⇒ P

2. Pnf → Pf for f bounded and Lipschitz continuous

3. F a closed subset of X, then lim supn PnF ≤ PF

4. G an open subset of X, then lim infn PnG ≥ PG

5. For a subset A of X with P(∂A) = 0, limn PnA = PA

Proof.
1 ⇒ 2: obvious because bounded Lipschitz functions are a subset of Cb(X).

2 ⇒ 4: G is open. Define fk(x) = k∥x − Gc∥ ∧ 1. If x ∈ G, then as k gets large, fk(x) → 1;
if x ∈ Gc, then fk(x) = 0. It is easy to check that fk is k-Lipschitz. Moreover, as k gets large, we
allow less x ∈ G to be strictly below 1. So fk ↑ 1G. Thus

lim inf
n

PnG ≥ lim inf
n

Pnfk = Pfk ↑ PG as k → ∞.

2 ⇒ 3: For any ϵ > 0, take a closed set F ′ such that F ′ ⊃ F and P(F ′) − P(F ) = ϵ. Define f
as follows:

f(x) =


1 if x ∈ F
0 if x ̸∈ F ′

(∗)interpolation between 0 and 1 by a bounded Lipschitz function if x ∈ F ′ \ F

Then by 2, we have Pn(f) → P(f). Note that 1F (x) ≤ f(x) ≤ 1F ′(x), so

Pn(F ) ≤ Pn(f) → P(f) ≤ P(F ′) = P(F ) + ϵ

⇒Pn(F ) ≤ P(F ) + ϵ for n sufficiently large.

Thus lim supn Pn(F ) ≤ P(F ).
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3 ⇔ 4 is obvious because one can simply take G = F c.

3/4 ⇒ 5: because ∂A = Ā \Ao where Ā is the closure of A and Ao is the interior of A.

5 ⇒ 1: This one is a little bit technical. Take any f ∈ Cb(X) and suppose there exists B > 0
such that ∥f∥∞ ≤ B. Without loss of generality, one can take B = 1. For any probability measure
P, the cumulative distribution function P(f(X) ≤ ·) has at most countably many jump points
(discontinuities) because one can easily show an injection from these jump points to rationals,
which are countable. Therefore one can do the following: given any precision threshold ϵ > 0,
divide [−B,B] into M grids with endpoints y0 = −B ≤ y1 ≤ y2 ≤ · · · ≤ yM = B satisfying the
following:

• yj − yj−1 ≤ ϵ for all j = 1, · · · ,M

• for each yj , define the sets Aj = {x ∈ X : yj−1 < f(x) ≤ yj}, so ∂Aj = {x ∈ X : f(x) = yj}
(a level set) and PAj = 0.

By 5, limn PnAj = PAj which further implies

lim
n

M∑
j=1

yjPnAj =

M∑
j=1

yj lim
n

PnAj =

M∑
j=1

yjPAj .

Note that by the above construction, we essentially recreate the way people define Lebesgue inte-
gration. Then we have ∣∣∣∣∣∣P(f)−

M∑
j=1

∫
x∈Aj

yjP(dx)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∑
j=1

∫
x∈Aj

f(x)P(dx)−
M∑
j=1

∫
x∈Aj

yjP(dx)

∣∣∣∣∣∣
≤

M∑
j=1

∫
x∈Aj

|f(x)− yj |P(dx)

≤ ϵ

M∑
j=1

∫
x∈Aj

P(dx)

= ϵ.

Similarly, ∣∣∣∣∣∣Pn(f)−
M∑
j=1

∫
x∈Aj

yjPn(dx)

∣∣∣∣∣∣ ≤ ϵ.

Combining the above: we have |Pn(f)−P(f)| ≤ 2ϵ. Because ϵ is chosen to be arbitrarily small, we
have limn Pn(f) = P(f).
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Remark 31.

• Aad’s proof in [? ] is much better and easier to understand by showing 2 ⇒ 4 instead.

• If one insists to show (*). One can choose a sequence k such that when k gets large,

∥x− F∥ ≫ k−1

when x ̸∈ F ′. Then set

fk(x) =
1

1 + k∥x− F∥
or simply any other functions similar to it. For x ∈ F , fk(x) = 1; for x ̸∈ F ′, fk(x) converges
to 0; so we are left to check the Lipschitz-ness of fk.

|fk(x)− fk(y)| =
k|∥x− F∥ − ∥y − F∥|

1 + k∥x− F∥+ k∥y − F∥+ k2∥x− F∥∥y − F∥

≤ k

1 + k∥x− F∥+ k∥y − F∥+ k2∥x− F∥∥y − F∥
∥x− y∥

and it is not hard to see that the numerator in the factor in front of ∥x− y∥ will not blow up
compared to k so fk is O(k)-Lipschitz.

• There are many other equivalent statements in portmanteau lemma that is not covered in
this note. You can also check more on page 6 of [? ] for Aad’s version.

7.2 Representation of probability distributions

7.2.1 Probability integral transform (PIF)

Uniform distribution on [0, 1] is denoted as Unif([0, 1]) with CDF FU (u) = u if U ∼ Unif([0, 1]).
For any continuous random variable X, denote its CDF as FX , then FX(X) ∼ Unif([0, 1]).

This is a very useful result for sampling random variables and the understanding of p-values in
applied statistics. When a p-value is correctly constructed, it should be a survival function (i.e. 1
- CDF) under the true data distribution. So if the distribution of p-values is not uniform between
0 and 1, then it indicates there could be some systematic modeling bias. The mis-use of p-values
or other types of statistical inference tool might be one major reason for the reproducibility crisis
in biomedical research, now also happening in machine learning research. For a recent discussion
on this topic, you can read Sander Greenland’s essay and similar reproducibility/credibility issues
in recent machine learning research, both written by statisticians.

7.2.2 Exponential distribution, Gamma distribution, and Beta distribution

X ∼ Expo(1): fX(x) = e−x
1{x ≥ 0}. X = − logU for U ∼ Unif([0, 1]).

Gamma distribution G ∼ Gamma(r) if G =
∑r

j=1Xj where Xj
i.i.d.∼ Expo(1)

Beta distribution B ∼ Beta(a, b) if B = Ga
Ga+Gb

where Ga ∼ Gamma(a) and Gb ∼ Gamma(b) and
Ga ⊥⊥ Gb.

Lemma 32. If Ga ∼ Gamma(a) and Gb ∼ Gamma(b) and Ga ⊥⊥ Gb, then

Ga +Gb ⊥⊥
Ga

Ga +Gb
.
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Application of Beta distribution: a first encounter of Bayesian inference. Beta distribution
is often used as the conjugate prior for Binomial likelihood. In a typical Bayesian analysis, one
first sets up a probability model parameterized by some unknown parameter θ ∈ Θ and views the
unknown parameter θ as a random variable taking values in Θ, with a given probability measure
Πθ, which is called the “prior” or “prior belief” by Bayesians. Consider the following example:
we observe X ∼ Binom(n, θ), and we want to use (X,n) to estimate θ. An obvious choice is to
use θ̂ = X/n, which is both the MLE and the method of moment (MoM) estimator of θ. Both
MLE and MoM belong to the so-called frequentist method. As a Bayesian, however, we first need
to specify the prior Πθ with density πθ and then use data (X,n) to update the prior to form the
posterior, using Bayes’ rule:

πθ|X(θ|X = x) =
fθ,X(θ, x)

fX(x)
=

fX|θ(x|θ)πθ(θ)
fX(x)

.

For the Binomial problem, with Beta(α, β) prior, we have

πθ|X(θ|X = x) ∝ θx(1− θ)n−xθα−1(1− θ)β−1

= θx+α−1(1− θ)n−x+β−1

which is again Beta distribution. This is why we call Beta prior is the conjugate prior for Binomial
likelihood. Using conjugate prior can dramatically simplify the analysis because we have closed-
form formula for many quantities of interest for Beta distribution. Just imagine what would have
happened if we consider other types priors for θ, e.g. a normal distribution truncated between [0, 1].
When the posterior distribution is too complicated, we need to resort to other more sophisticated
methods to obtain the posterior, e.g. by MCMC sampling or variational inference. Even though
sampling techniques are quite mature, one can still use conjugate prior in some component of a big
model to simplify the computation in practice.

8 Normal, chi-square, and Poisson

The simplest possible high dimensional model is the Gaussian Sequence Model or The Many Normal
Mean model:

yk = µk + ϵZk, Zk
i.i.d.∼ N(0, 1).

Here each piece of data corresponds to an unknown parameter θk. More generally, yk = µk+ ϵpkZk

or yk = αkµk+ϵZk. Gaussian sequence model is a very rich model, and it is now the standard model
mathematical statisticians use for theoretical investigation. Iain Johnstone has a whole book [? ]
with almost 500 pages dedicated to this simple model. Iain Johnstone is also the person bringing
Random Matrix Theory (RMT) into modern high-dimensional statistics.

8.1 Multi-Variate Normal (MVN)

Definition 33. Y = (Y1, · · · , Yk)⊤ ∼ MVNk if it is of the form:

Yk×1 = Ak×mZm×1 + µk×1,

here Z = (Z1, · · ·Zm)⊤, Zi
i.i.d∼ N(0, 1). Write Y ∼ MVNk(µ, V ) if Y is a MVN of dimension k with

mean µ and covariance matrix V , V = AA⊤
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Remark 34. It is OK for a multivariate normal to be degenerate. If k > m, then let’s just call
this distribution the degenerate multivariate normal. In this case, the covariance matrix of Y has
rank at most m and Y is concentrated on a proper subspace of Rk. It also implies that Y does not
have a density with respect to the Lebesgue measure.

But I have not encountered a very useful application of degenerate MVN. This might be due
to the limitation of my knowledge though.

The benefit of the above definition is an explicit way of constructing multivariate distributions
with dependent coordinates from independent product measures. This is a nice philosophy to bear
in mind. Similar philosophy was used in copula.

The MVN has the following important properties.

Proposition 10. Y is MVN(µ, V ) if and only if ∀t ∈ Rk, t⊤Y is univariate normal.

Proof. The proof of necessity is trivial. We then utilize MGF to prove the sufficiency.

E(t⊤Y ) = t⊤µ var(t⊤Y ) = t⊤V t

Mt⊤Y (s) = exp ((t⊤µ)s+
1

2
(t⊤V t)s2) = E(es(t

⊤Y ))

= E(et
′⊤Y ) (regard st as t′)

Proposition 11. Assume Y =
(
Y1
Y2

)
∼ MVNk(µ, V ), V =

(
V11 V12
V21 V22

)
, then Y1 ⊥⊥ Y2 if and only if

V12 = V21 = 0.

Note 35. The above proposition is ‘within’ a MVN: If two univariate normal random variables
are uncorrelated, they are not necessarily independent if they are not jointly normal. Here are two
counter examples:

1. Z1 ∼ N(0, 1), S is a Rademacher variable, Z2 = SZ1. Then Z1 ∼ Z2, cov(Z1, Z2) = 0, but
Z2
1 = Z2

2 indicates they are dependent. (This example is not so ideal because Z1 = SZ2 exists
only in a null set of R2)

2. A richer example: Y1 = Z1, Y2 = ρZ1 + γZ2, 0 ≤ ρ ≤ 1, γ = (1 − ρ2)1/2, Z1, Z2
i.i.d∼

N(0, 1),W1 = SY1,W2 = Y2. Here cov(W1,W2) = 0 but W1 and W2 are dependent. (proof
hint: E(W 2

2 − 1|W 2
1 ) is a function w.r.t. W 2

1 )

Proposition 12 (Rotation invariance of isotropic Gaussian). Z ∼ MVNk(0, Idk×k), Γk×k is an
orthogonal matrix (i.e. Γ ∈ O(k), the orthogonal group of dimension k, or ΓΓ⊤ = Id), then
ΓZ ∼ MVNk(0, Idk×k). (Spherically symmetric distribution)

Proof. Compare the mean vector and covariance matrix.

Remark 36. This not only holds for multivariate Gaussian, but also holds for spherically symmetric
distributions. But if one proves some results under Gaussian using rotation invariance, it generally
cannot be generalized to sub-gaussians (see later in the lecture).

Corollary 3. Z1, Z2, · · ·Zn
i.i.d∼ N(0, 1), Z̄ = 1

n

∑n
i=1 Zi, s

2 = 1
n−1

∑n
i=1(Zi − Z̄)2. Then we have

Z̄ ⊥⊥ s2, Z̄ ∼ N(0, 1/n), s2 ∼ 1
n−1χ

2
n−1

Note 37. This above result only holds for normal distribution.
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8.2 Lindeberg’s telescoping sum technique

We first state the Lindeberg version of the CLT for sum of independent but not necessarily identi-
cally distributed random variables:

Theorem 38. X1, · · · , Xn independent, with E[Xk] = µk, var[Xk] = σ2
k and E|Xk|3 < ∞. Define

µ =
∑n

k=1 µk and σ2 =
∑n

k=1 σ
2
k and Z ∼ N(µ, σ2). Then for any f ∈ C3

b (R), we have∣∣∣∣∣Ef
(

n∑
k=1

Xk

)
− Ef(Z)

∣∣∣∣∣ ≲ ||f ′′′||∞
n∑

k=1

E|Xk|3. (1)

Proof. The proof is the so-called Lindeberg’s telescoping sum technique. Create independent
Z1, · · · , Zn independent from X1, · · · , Xn but Zk ∼ N(µk, σ

2
k) for k = 1, · · · , n. Define

Yk = X1 + · · ·+Xk−1 + Zk+1 + · · ·+ Zn.

Then we immediately have the following identity: Yk+Zk = Yk−1+Xk−1. Note that Yk ⊥⊥ Xk ⊥⊥ Zk.
Then we can decompose the LHS of eq. (1) as follows:∣∣∣∣∣Ef

(
n∑

k=1

Xk

)
− Ef(Z)

∣∣∣∣∣
= |Ef(Yn +Xn)− f(Yn + Zn) + f(Yn−1 +Xn−1)− f(Yn−1 + Zn−1) + · · · |

≤
n∑

k=1

|Ef(Yk +Xk)− f(Yk + Zk)| .

We analyze each summand separately by Taylor theorem:

|Ef(Yk +Xk)− f(Yk + Zk)|

=

∣∣∣∣12E
∫ 1

0
f ′′′(Yk + tXk)t

2X3
kdt−

1

2
E
∫ 1

0
f ′′′(Yk + tZk)t

2Z3
kdt

∣∣∣∣
≤ 1

2

(
E
∫ 1

0
|f ′′′(Yk + tXk)|t2|Xk|3dt+ E

∫ 1

0
|f ′′′(Yk + tZk)|t2|Zk|3dt

)
≤ ∥f ′′′∥∞

2
(E|Xk|3 + E|Zk|3)

∫ 1

0
t2dt

≲ ∥f ′′′∥∞E|Xk|3.

Finally we add them all up.

An immediate corollary of Theorem 38 is the following:

Corollary 4. X1, X2, · · · , Xn
i.i.d.∼ (0, 1) (which denotes with mean 0 and variance 1), then for any

f ∈ C3
b (R), we have ∣∣∣∣∣Ef

(
1√
n

n∑
k=1

Xk

)
− Ef(Z)

∣∣∣∣∣ ≲ ||f ′′′||∞
E|X|3√

n
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8.3 Stein’s Method

Lemma 39 (Stein’s Lemma). f : R → R is a differentiable function, Z ∼ N(0, 1),E[f ′(Z) −
Zf(Z)] = 0, which is also called ‘Stein’s Identity’.

Proof.

E(f ′(Z)) =

∫ ∞

−∞
f ′(t)

1√
2π

e−
t2

2 dt =

∫ ∞

−∞

1√
2π

e−
t2

2 d(f(f))

=
1√
2π

e−
t2

2 f(t)|∞−∞ −
∫ ∞

−∞
f(t)

1√
2π

de−
t2

2

= −
∫ ∞

−∞
f(t)

1√
2π

(−t)e−
t2

2 dt = E(Zf(Z))

Stein’s Lemma offers a possible strategy to measure how far a random variable X to a standard
normal random variable Z. Intuition indicates: E(f ′(X) − Xf(X)) ≈ 0 if X ≈ Z. In order to
prove X ⇒ Z, we can prove sup

h∈Lip
Eh(X) − Eh(Z) → 0 (by portmanteau lemma). Here Lip :=

{f, |f(x)− f(x′)| ≤ L||x− x′||}). Firstly, we introduce Stein’s equation, which is important in the
proof of a later theorem (Theorem 41).

Lemma 40 (Stein’s equation). h : R → R is Lipschitz continuous function. X ∼ PX , Z ∼ N(0, 1)

Then E(h(X) − h(Z)) = E[f ′
h(X) − Xfh(X)]. Here fh(x) = e

x2

2

∫ x
−∞ g(t)e

−t2

2 dt, g(x) = h(x) −
E(h(Z)).

A remark is: any Lipschitz continuous function has essentially bounded (bounded with Lebesgue
measure 1) derivative almost everywhere.

The result is easy to verify when we notice that f ′
h(x) = g(x)+xfh(x), which is a simple ODE.

Besides, we have ||f ′′
h ||∞ ≲ ||h′||∞, ||f ′

h||∞ ≲ ||h′||∞, ||fh||∞ ≲ ||h′||∞. The proof of these bounds
can refer to [? ], page 37-40. Another useful resource is Sourav Chatterjee’s lecture notes. Then
we utilize this equation to bound sup

h∈Lip
[Eh(X)− Eh(Z)].

Theorem 41. X1, X2 · · ·Xn
i.i.d∼ PX ,E(X) = 0,E(X2) = 1,E(|X|3) < ∞, X̃ = 1√

n

∑n
i=1Xi, then

sup
h∈Lip

[Eh(X̃)− Eh(Z)] ≲ E|Xi|3√
n

.

Proof. From Stein’s equation, we have:

sup
h∈Lip

[Eh(X̃)− Eh(Z)] = sup
h∈Lip

E[f ′
h(X̃)− X̃fh(X̃)]
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Let X ′ = X̃ − 1√
n
X1 =

1√
n

∑n
i=2Xi. Obviously X ′ ⊥⊥ X1. Let f = fh.

E[X̃f(X̃)] = E[
√
nX1f(X̃)] (∀fdifferentiable)

= E[
√
nX1(f(X

′) +
1√
n
X1f

′(X ′))] +R1 (Taylor expansion)

= E[f ′(X ′)] +R1 = E[f ′(X̃)] +R1 +R2

|R1| = |E
[
X3

1√
n
f ′′(X ′′)

]
| (X ′ ∧ X̃) ≤ X ′′ ≤ (X ′ ∨ X̃)

≤ E
|Xi|3√

n
|f ′′(X ′′)| ≤ E

|Xi|3√
n

||f ′′||∞ ≲
E|Xi|3√

n

|R2| = |E(f ′(X ′)− f ′(X̃)| = |E(f ′(X ′)− f ′(X ′ +
X1√
n
)|

= |E(f ′(X ′)− f ′(X ′)− X1√
n
f ′′(X ′′′))|

≤ E|X1√
n
f ′′(X ′′′)| ≤ E|X1|√

n
||f ′′||∞ ≲

E|Xi|3√
n

In conclusion : sup
h∈Lip

[Eh(X̃)− Eh(Z)] = sup
h∈Lip

E[f ′
h(X̃)− X̃fh(X̃)] ≲ sup

h∈Lip

E|Xi|3||f ′′||∞√
n

≲ E|Xi|3√
n

Remark 42. Stein’s identity, Stein’s equation, and Stein’s method are not only useful in the context
of proving normal approximations. In fact, many well known distributions have their own version
of Stein’s identity, Stein’s equation and Stein’s method: Poisson distribution in [? ], Exponential
distribution in [? ], Ising model in [? ], Diffusion processes in [? ], Birth-death processes in [? ],
Negative binomial distributions in [? ], and Markov chains in [? ]. For a high-level review, you can
also look at [? ? ? ? ]. If you are interested, you can check out the obituary of Charles Stein by
Stanford University on his legacy after his passing.

8.4 Gaussian Concentration

Proposition 13 (Chernoff’s bound). Random variable Z ∼ N(0, σ2), then we have P (Z − µ >

t) ≤ e−
t2

2σ2

Proof.

P (Z − µ > t) = P (eλ(Z−µ)) > eλt) ∀λ > 0

≤ e−λtE[eλ(Z−µ)] (Markov Inequality)

= e−λ(t+µ)eλµ+λ2σ2/2 (∗)

λ0 =
t
σ2 minimize the above formula (*). Replace λ by λ0 in (*) we have: P (Z−µ > t) ≤ e−

t2

2σ2 .

The tail probability (i.e. P (|X−µ| > t)) dropping at an exponential rate is an ideal property for
a distribution. Besides Gaussian, a wider range of distributions such as all bounded distributions
has this property. They are called ‘Sub-Gaussian’ distributions.
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Definition 43. Random variable X with mean µ is sub-Gaussian if ∃σ2 > 0, s.t. Eet(X−µ) ≤
eσ

2t2/2. It deduces P (|X − µ| > t) ≤ 2e−
t2

2σ2 .

Proposition 14. If X ∼ sub-Gaussian(0, σ2) (here σ is not necessarily the standard deviation

of X), then ∀k ≥ 1,E|X|k ≤ (2σ2)
k
2 kΓ(k2 ). [For comparison, E|Z|k = 1√

π
(2σ2)

k
2Γ(k2 + 1) =

1√
π
(2σ2)

k
2
k
2Γ(

k
2 ) if Z ∼ N(0, σ2)].

Proof. Suppose X ∼sub-Gaussian(0, σ2). We know from the previous lecture that:

E|X|k =

∫ ∞

0
P (|X|k > t)dt =

∫ ∞

0
P (|X| > t

1
k )dt

≤ 2

∫ ∞

0
e−

t2/k

2σ2 dt (defn. of sub-Gaussian)

= 2

∫ ∞

0
e−uk

2
(2σ2u)k/2−1du2σ2 (u =

t2/k

2σ2
)

= k(2σ2)
k
2

∫ ∞

0
e−uu

k
2
−1du

= (2σ2)
k
2 kΓ(

k

2
)

8.5 Darmois-Skitovič lemma

Lemma 44 (Darmois-Skitovič lemma). Let X1, ..., Xn be independent random variables. Given
two linear combinations L1 = a1X1 + ... + anXn and L2 = b1X1 + ... + bnXn, if L1 and L2 are
independent, then if aibi ̸= 0 then Xi is normally distributed.

Proof. Consider the characteristic function of the random vector (L1, L2):

cL1,L2(t1, t2) = E
[
ei(t1,t2)

⊤(L1,L2)
]

= E
[
eit1(a1X1+...+anXn)+it2(b1X1+...+bnXn)

]
= E

[
ei(t1a1+t2b1)X1+...+i(t1an+t2bn)Xn

]
=

n∏
i=1

E
[
ei(t1ai+t2bi)Xi

]
≡

n∏
i=1

cXi(t1ai + t2bi)

where the last line follows from independencies among X1, · · · , Xn. Since L1 ⊥⊥ L2, we also have

cL1,L2(t1, t2) = cL1(t1)cL2(t2).

Combining the above two, we have:

n∑
i=1

log cXi(t1ai + t2bi) = log cL1(t1) + log cL2(t2)
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which says that the function on the LHS as a function of t1 and t2 is separable, which implies that
each summand is a polynomials with degree at most n. The only distribution with log characteristic
function (cumulant generating function) being a polynomial is Gaussian (a proof can be found in
[? , Chapter 2.5]).

A corollary of Lemma 44 is the more famous Kac-Bernstein theorem:

Theorem 45 (Kac-Bernstein theorem). Given two independent random variables X1, X2. If L1 =
X1 +X2 and L2 = X1 −X2 are independent, then X1 and X2 must be normally distributed.

An interesting implication of Darmois-Skitovič lemma in statistical application is the following:

Suppose there are two random variables X and Y and you know the data generating
mechanism is either (1) Y = βX + ϵY where ϵY is a mean zero noise independent of
X or (2) X = αY + ϵX where ϵX is a mean zero noise independent of Y . Can you tell
the difference between Model (1) and Model (2)? A question that people often ask is
whether it is possible to tell whether Model (1) or (2) is the reality, given n i.i.d. pairs
(Xi, Yi), i = 1, · · · , n. A natural idea is to run regressions in the direction of (1) and in
the direction of (2) and compare the results. Interestingly, based on Darmois-Skitovič
lemma, if Model (1) is true, and X, ϵY are both normally distributed, then Model (2)
also holds with Y, ϵX normally distributed. So it is impossible to distinguish between
Model (1) and (2). However, once either the covariate or the noise is non-Gaussian,
running regressions in opposite directions can differentiate (1) from (2) or vice versa.
This is the basis of a recent important work [? ] in a subfield of statistics, machine
learning, computer science, and philosophy called “causal discovery”. We can first
check that there always exist such α and ϵY . Observe that var[Y ] = β2var[X] + var[ϵY ]
here var[X], β, var[ϵY ] are all given. Then var[X] = α2var[Y ] + var[ϵX ] = α2β2var[X] +
α2var[ϵY ] + var[ϵX ] ⇒ (1− α2β2)var[X] = α2var[ϵY ] + var[ϵX ] so

var[ϵX ] = (1− α2β2)var[X]− α2var[ϵY ] > 0.

Furthermore, E[Y (X − E[X|Y ])] = E[Y (X − αY )] = 0 which gives us

E[Y (X − αY )] = E[Y X]− αE[Y 2] = β2E[X2]− αβ2var[X]− αvar[ϵY ]

= β2(1− α)var[X]− αvar[ϵY ] = 0 ⇒ α

1− α
=

β2var[X]

var[ϵY ]
.

From here, it is easy to see that we can take ϵX = X − αY which is a Gaussian and
hence ϵX ⊥⊥ Y . To prove that this is necessary, we need to use Lemma 44 and consider
the following linear combination:

Y = βX + ϵY

ϵX = (1− αβ)X − αϵY

8.6 Gaussian graphical models

We have seen that marginal independency between different (sets of) variables in a multivariate
Gaussian distribution MVN(0,Σ) can be read off by whether the corresponding elements in covari-
ance matrix Σ equal zero. How about conditional independency? Actually, it can be studied via
“Gaussian graphical models” [? ].
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Here we only consider non-degenerate multivariate Gaussians i.e. Σ ≻ 0 so Ω = Σ−1 is well-
defined. Given Z ∼ MVN(0,Σ) how to determine if ZI ⊥⊥ ZJ |ZK for I, J,K ⊆ {1, · · · , n} ≡ V and
I ∩ J = ∅? In fact, one could show the following:

Zi ⊥⊥ Zj |ZV \{i,j} ⇔ Ωi,j = 0.

You should try to prove this as an exercise. Given this result, can we devise a straightforward
algorithm of deciding if given index subsets I, J,K such that I ∩ J = ∅, to decide if ZI ⊥⊥ ZJ |ZK?
One natural idea is to attach a probabilistic model to a graph as follows: Given Ω, each dimension
corresponds to a vertex of an undirected acyclic graph G(V,E), where the edge set E excludes edge
i− j whenever Ωi,j = 0. Then if ZI ⊥⊥ ZJ |ZK if every path between I and J intersects K.

8.7 Gaussian processes

Now that we have understood finite-dimensional multivariate normals, we briefly discuss its infinite-
dimensional extension: Gaussian Processes (GP). Gaussian processes are random functions f : X →
R where X is a normed metric space, say R. f is distributed as Gaussian processes if all finite-
dimensional discretization {f(x1), · · · , f(xn)} is distributed as a multivariate Gaussian, for any n.
We will talk more about GP when it comes to Chapter 3 & Bayesian nonparametrics (if we got
time or if you read the papers).

8.8 Chi-squared distribution

Central chi-squared χ2
d,0 ∼

∑d
i=1 Z

2
i where Zi

iid∼ N(0, 1);

Noncentral chi-squared χ2
d,ξ ∼

∑d
i=1(Zi + µi)

2 with ξ =
∑d

i=1 µ
2
i .

Density function:

X ∼ χ2
d,0 : fX(x) =

2

Γ(d/2)
e−x/2

(x
2

)d/2−1
1{x ≥ 0}

where Γ(z) =
∫∞
0 xz−1e−xdx is the Gamma function which always satisfies Γ(z+1) = zΓ(z). When

z is an integer, Γ(z) = (z − 1)!.

Theorem 46 (Chi-squared tail bound).

P
[
|χ2

d − d| > t
]
≤ 2 exp

(
− t2

8d

)
There are many useful results on chi-squared distributions. You can refer to [? ] when needed.

Related to chi-squared distribution is the sub-exponential distribution, defined as follows:

Definition 47. A random variable X is sub-exponential(µ, σ, α) if EX = µ and

Eeλ(X−µ) ≤ e
λ2σ2

2 for |λ| < 1

α

The main difference between sub-Gaussian and sub-exponential is the above upper bound on
the MGF does not hold for all R for sub-exponentials. So sub-exponential can have thicker tail
than sub-Gaussian.
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Theorem 48. If X ∼ sub-exponential(µ, σ, α), then

P(|X − µ| > t) ≤ 2 exp

{
−1

2

(
t

α
∧ t2

σ2

)}
Proof. Everything follows the proof of the Chernoff bound for normal distribution, except when
t > σ2/α, the unconstrained minimizer λ = t/σ2 > 1/α. In that range, the minimizer should be
1/α instead, so the exponent becomes −t/α+ σ2/2α2 ≤ −t/(2α).

A sufficient condition for a random variable to be sub-exponential is the following Bernstein
type bound on higher order moments:

Theorem 49. For X with mean µ and variance σ2, if |E(X − µ)k| ≤ k!
2 σ

2bk−2 for k = 3, 4, · · · ,
then

Eeλ(X−µ) ≤ exp

{
λ2σ2

2(1− b|λ|)

}
, |λ| < 1

b
.

Proof. Taylor expansion:

Eeλ(X−µ) ≤ 1 + Eλ(X − µ) +
λ2

2
E(X − µ)2 +

∞∑
k=3

λk |E(X − µ)k|
k!

≤ 1 +
λ2σ2

2
+

λ2σ2

2

∞∑
k=3

(|λ|b)k−2

= 1 +
λ2σ2

2
(1 + (|λ|b) + (|λ|b)2 + · · · )

= 1 +
λ2σ2

2
1/(1− |λ|b) if |λ| < 1/b

≤ e
λ2σ2

2(1−|λ|b) .

One can easily check χ2
d ∼ sub-exponential(d, 2

√
d, 4) by looking at its MGF. So the chi square

tail bound follows from Theorem 48.

8.9 Poisson distribution

For X ∼ Poisson(λ), Pr(X = x) ≡ fX(x) = e−λλx

x! for x = 0, 1, · · · .

Lemma 50. χ2
d,ξ ∼ χ2

d+2K,0 with K ∼ Poisson(ξ/2).

Lemma 51. Stein’s identity for Poisson: E[Kf(K)− λf(K + 1)] = 0 when K ∼ Poisson(λ).

I won’t prove the above two results. Check them on your own.

Poisson approximation:
Normal approximation is supported by CLT. Is there any similar result for Poisson approxima-

tion? Actually, there is a so-called “law of rare events/law of small numbers”:
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Theorem 52. X1, · · · , Xn
i.i.d.∼ Bernoulli(p), if as n → ∞, p → 0 but np → λ for some λ > 0, then

X1 + · · ·+Xn
d→ Poisson(λ).

Similar to Stein’s method, Poisson approximation is also often used in research on random
graphs. For examples, for Erdös-Renyi graph G(n, p) with n vertices and edges are independent
Bernoulli with probability p, then the total number of edges will be approximately a Poisson dis-
tributed random variable. Actually, even the total number of triangles, where the summands are
no longer independent, is also approximately Poisson. This can be proved by using Stein’s method
for Poisson approximations.

Poissonisation/Poissonization trick:
When you are dealing with a multinomial sample of K classes, Multinomial(n, p1, · · · , pK),

the number of elements falling in each class is denoted as nk for k = 1, · · · ,K. Each nk ∼
Binomial(n, pk) but different nk’s are not independent because of the equality constraint n1+ · · ·+
nk = n. It comes in handy if you can somehow treat them as being independent. Poissonisation
trick is the tool that you will use in this context. Instead of n being fixed, you can consider a
random variable N ∼ Poisson(n). Define Nk similarly, then Nk are independent and identically
distributed as Poisson(npk) for k = 1, · · · ,K.

Modeling with Poisson:
Poisson can be a useful distribution for modeling count data (0, 1, 2, 3, · · · ). But there is one

important caveat – Poisson has equal mean and variance – a very restrictive feature. When modeling
count data using Poisson, you always need to check if the sample mean and variance are close (in
regression, there is no need to be close marginally, but still need to be close conditionally on the
covariates). If Poisson is not a good modeling choice, then negative binomial distribution, Poisson
mixtures or others can be tried.
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