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1 Heuristics

It is helpful to think about the theory at the heuristic level. Pfanzagl and von Mises posited
the following expansion to hold for the functional of interest ψ(P ) where the first order Taylor
expansion should be understood as an output of a linear operator

ψ(Pt)− ψ(P ) = ψ̇(Pt − P ) + o(∥Pt − P∥) =
∫
χd(Pt − P ) + o(∥Pt − P∥),

taking limit t ↓ 0, we have the arguably “Schrödinger equation” equivalent in statistics:

d

dt = 0
ψ(Pt) =

∫
χ · s(x) · p(x)dx = E(χ · s(X)),

subject to the constraint Eχ ≡ 0. If the equation does not hold, it means that ψ is not sufficient
smooth as a functional. A natural solution is to find an approximation of ψ, say ψ̃ such that the
above equation holds, and then control the approximation error. This route has been taken by ??.

Why this equation is important? Suppose we replace Pt by P̂n, some estimator of P :

ψ(P̂n)− ψ(P ) =

∫
χd(P̂n − P ) + o(∥P̂n − P∥)

=

∫
χdP̂n + o(∥P̂n − P∥)

suggesting that we can de-bias the “plug-in” estimator ψ(P̂n) by adding the influence function
mean under P̂n:

ψ̂1 = ψ(P̂n)−
∫
χdP̂n.

This heuristic also motivates the following, if you are concerned about the remainder term:

ψ(Pt)− ψ(P ) =

∫
χ1(x)d(Pt − P )(x) +

∫ ∫
χ2(x1, x2)d(Pt − P )(x1)d(Pt − P )(x2) + o(∥Pt − P∥2)

d

dt
ψ(Pt) = E(χ1(X)s1(X)) + E(χ2(X1, X2)s2(X1, X2))

where

s2(x1, x2) =
1

2

(
d2pt(x1)

dt2

∣∣∣∣
t=0

1

p(x1)
+

d2pt(x2)

dt2

∣∣∣∣
t=0

1

p(x2)

)
+ s1(x1) · s1(x2).
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If you are interested in this direction, please read the treatise ?.
Recall the CRLB:

sup
t

( d
dt=0ψ(Pt))

2

E(s(X)2)
= sup

t

E2(χ · s(X))

E(s(X)2)
= sup

s∈Tr(R)

E2(χ · s(X))

E(s(X)2)
≤ E(χ2)

≡ sup
s∈Tr(R)

Is =: semiparametric variance bound.

There is a tension between the richness of the score (tangent spaces) and the richness of the
influence functions: the richer the tangent space is, the less the influence functions there are.

2 Correspondence to differential geometry

In terms of the level that statisticians are using semiparametric theory, the value of more advanced
differential geometry is somewhat limited. But if you are familiar with differential geometry, be-
low is a mapping for you to gain deeper understanding. The kind of differential geometry that
semiparametric theory is using is the so-called information geometry, initiated by Rao, Cox, Reid,
Barndorff-Nielsen, Efron [?], and later by Amari, Jun Zhang, Battey (Cox’s last student/post-
doc) [????]. But possibly due to the pure-math nature, this field did not enter the mainstream
statistical literature, nor the mainstream pure-math geometry literature, hence their own journal
“Information Geometry”. In particular, I personally really like Heather Battey’s recent papers on
this topic; she’s doing some very specific cases but there could be a very general theme behind
specific examples. But such works are more statistical in nature and cannot be easily replaced by
AI.

Let R = {r =
√
p : ∥r∥2 ≡ 1} be the statistical manifold [?]. To each r ∈ R, we attach a

smooth curve γ : R → R such that γ(0) = r and let γ(t) ≡ rt be the one-dimensional parametric
submodel. To each r ∈ R, define the velocity νγ,r : C

∞(R)
∼→ R as the homeomorphism

νγ,rf = (f ◦ γ)′(0)

for any chart f : R → Rd. All such velocities constitute the so-called tangent space TrR locally
at r. In statistics, the derivative operation is defined as the Derivative in Quadratic Mean (or
Hellinger derivative) as follows:∫ (

rt − r − 1

2
t · r · s

)2

= o(t2) or

∫ (
rt − r

t
− 1

2
r · s

)2

= o(1), as t ↓ 0.

I want to highlight that the choice of DQM for differentiation is just one choice, not necessarily
the only choice. For example, in differential privacy, there are results that use total variation
distance as the metric [??].

The difficulty of using more differential geometry in semiparametric theory lies in the follow-
ing unfortunate/fortunate fact: for nonparametric models, the statistical manifold is generally
infinite-dimensional. Infinite-dimensional manifold is not an object extensively studied by pure
mathematicians, except for a few special cases such as infinite-dimensional Lie group, and Wasser-
stein spaces (e.g. via the famous Otto calculus). One possible reason for this is the study of
manifolds was motivated by physics – trying to describe the spacetime that we actually live in. But
statistical manifolds equipped with Hellinger metric do not belong to that category.
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3 Model tangent space

Most of the key references on semiparametric theory do not go into the rabbit hole on how to
“compute” the tangent space corresponding to a statistical manifold R. Generally, you can do the
computation using the idea in the results below.

Theorem 1. When we do not have any constraint on R, TrR = L2
0(r

2) has dimension ∞.

Proof. For any function g such that Erg ≡ 0, Erg
2 <∞ and Erg

4 <∞ at r ∈ R, we can establish
the smooth curve γ2(t) : t 7→ r2(1 + t · g) =: r2t such that: γ(0) = r and∫ (

rt − r

t
− 1

2
r · g

)2

=

∫ (
r ·

√
1 + t · g − 1

t
− 1

2
r · g

)2

=

∫ ( 1
2 t · r · g + δt

t
− 1

2
r · g

)2

=

∫ (
1

2
(1 + t̄ · g)−1/2 · r · g − 1

2
r · g

)2

=
1

4

∫
pg2

{
(1 + t̄ · g)−1/2 − 1

}2
= o(1).

Hence L2
0(r

2) ∩ L4
0(r

2) = Tr(R). But L2
0(r

2) ∩ L4
0(r

2) = L2
0(r

2) so we prove the claim.

Theorem 2. For a log likelihood ℓ(x, y) = ℓ(y|x)+ℓ(x). The model tangent space can be decomposed
into the following:

Tr(R) = ΛY |X + ΛX

and ΛY |X ⊥⊥ ΛX .

Proof. The fact is trivial – any element in ΛX is a measurable function of X, whereas any element
in ΛY |X is a measurable function of X,Y subject to the conditional mean given X equal to 0.

Definition 3. The Efficient Influence Function is defined as

EIF = Π[IF|Tr(R)]

where IF is any influence function and Π[·|Λ] is the L2-projection operation onto the linear space
Λ.

So the above definition tells us how to find the EIF – we first use our standard calculus of
influence functions to find one influence function, then we find the tangent space and project.

Example 1. Consider the following logistic regression:

P(A = 1|X) = π(X⊤β), β ∈ Rd.
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This model has conditional likelihood

LA|X(A,X;β) = π(X⊤β)A(1− π(X⊤β))1−A ⇒ ℓA|X(A,X;β) = A log π(X⊤β) + (1−A) log(1− π(X⊤β))

⇒ sA|X(A,X;β) =
A

π(X⊤β)
π(X⊤β)(1− π(X⊤β))X − 1−A

1− π(X⊤β)
π(X⊤β)(1− π(X⊤β))X

= {A(1− π(X⊤β))− (1−A)π(X⊤β)}X = {A− π(X⊤β)}X.

The part of the tangent space is then the closure of the span

ΛA|X =
{
θ⊤{A− π(X⊤β)}X : θ ∈ Rd

}
.

For X, since we do not impose anything on X, we have

ΛX =
{
h(X) : Eh(X) ≡ 0,Eh2(X) <∞

}
.

Then TrR = ΛA|X + ΛX .

Example 2. Consider the distribution of X1, X2 without any constraint, which we call model (1):

ℓ(x1, x2) = ℓ(x1) + ℓ(x2|x1).

Show the following: the tangent space of p(x1, x2) is the direct sum between two L2 spaces:

Tp(P) ≡ Λ1 + Λ2|1,Λ1 = L2
0(pX1),Λ2|1 = L2

0(pX2|X1
) = {g(X1, X2) : E(g(X1, X2)|X1) ≡ 0} .

so Tp(P) ≡ L2
0(pX1,X2) ≡

{
h(X1, X2)− Eh(X1, X2) : h(X1, X2) ∈ L2(pX1,X2)

}
.

Now what if X1 is independent of X2, which we call model (2):

ℓ(x1, x2) = ℓ(x1) + ℓ(x2)?

Then

Tp(P) ≡ Λ1 ⊕ Λ2,Λ1 = L2
0(pX1),Λ2 = L2

0(pX2).

and now we have a nontrivial orthocomplement to Tp(P) because apparently Tp(P) ̸= L2
0(pX1,X2)

in this case. In particular we have the following:

Tp(P)⊥ =
{
h(X1, X2) ∈ L2

0(p(X1, X2)) : E(h(X1, X2)|X1) ≡ E(h(X1, X2)|X2) ≡ 0
}

=
{
h(X1, X2)− E(h(X1, X2)|X1)− E(h(X1, X2)|X2) + E(h(X1, X2)) : h(X1, X2) ∈ L2(p(X1, X2))

}
.

Derivation: take any h1 ∈ L2
0(pX1) and any h2 ∈ L2

0(pX2), for any g ∈ Tp(P)⊥ ⊆ L2
0(µX1,X2) where

we let µ denote the Lebesgue measure, we must have

E(g(X1, X2)h1(X1)) = E(g(X1, X2)h2(X2)) = E(g(X1, X2)) = 0

⇒ E(g(X1, X2)|X1) = 0,E(g(X1, X2)|X2) = 0,E(g(X1, X2)) = 0

Whenever you obtain some influence function IF ≡ IF(X1, X2), to obtain the EIF under model
(2), we just project:

EIF = IF−Π[IF|Tp(P)⊥] = IF− (IF− E(IF|X1)− E(IF|X2)) = E(IF|X1) + E(IF|X2).
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Thought Experiment 4. In fact, the above results can be generalized to characterizing the model
tangent space of any probability distribution Markov factorized according to a Directed Acyclic
Graph (DAG) or Bayesian network (BayesNet) G(V,E) where V is the set of vertices and E is the
set of directed edges without forming directed cycles:

pXV
(xV ) =

∏
v∈V

pXv |XpaG(v)
(xv|xpaG(v)),

where paG(v) is the parent set of v ∈ V relative to the DAG G. For a complete DAG, i.e. every
vertex is connected with every other vertex, the model tangent space is the entire L2

0(PXV
). How-

ever, the Markov factorization property restricts that Xv ⊥⊥ XndG(v)|XpaG(v)
, ndG(v) denotes the

non-descendants of v ∈ V relative to the DAG G. If there are missing edges, there will be algebraic
(equality) constraints. Existence of equality constraints often points to a smaller tangent space. In
certain models, there will be semi-algebraic (inequality) constraints. Existence of inequality con-
straints often does not reduce the tangent space [?]. If the model is finite-dimensional, “smaller”
means smaller dimension. Such results belong to a field called “algebraic statistics”, leading re-
searchers including Robin Evans, Mathias Drton, Thomas Richardson and etc. from statistics, and
Bernd Sturmfels, Cynthia Vinzant, June Huh (fields medalist) and etc. from pure math. It is at
the intersection between probability theory and algebraic/tropical geometry.
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