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Announcement

Turn in the paper review before next Wednesday on
canvas!
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What causal inference is all about?

• Observational data, interventional data, background knowledge ⇒
Causal graph/structure

• If a query is not identifiable, can we construct a nontrivial bound?
Causal graph/structure implies (conditional) independences and
nested (conditional) independences, which are equality/algebraic
constraints, but how about inequality/semi-algebraic
constraints?
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IV inequality

Assuming binary instrumental variable (IV) model:
Z ∈ {0, 1}: IV, A ∈ {0, 1}: Treatment, Y ∈ {0, 1}: outcome

IV DAG:

Z A Y

U

Bell-CHSH experiment:

Alice’s

observable X
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IV inequality

Assuming binary instrumental variable (IV) model:
Z ∈ {0, 1}: IV, A ∈ {0, 1}: Treatment, Y ∈ {0, 1}: outcome

IV SWIG:

Z z A(z) a Y (a)

U

Bell-CHSH experiment:

Alice’s

observable X
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outcome A

Bob’s
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Bob’s
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IV inequality

• With IV DAG, it is possible to obtain non-trivial bounds for
Pr(Y (1) = 1)− Pr(Y (0) = 1),

• which suggests non-trivial inequalities imposed on the observed
margin of IV DAG/SWIG:

Theorem 1 (Pearl UAI 1995)

When Z , A, Y have finite and discrete state spaces Z, A, Y

max
a∈A

∑
y∈Y

max
z∈Z

p(a, y |z) ≤ 1

where p(a, y |z) := Pr(A = a,Y = y |Z = z)

Implication: we can falsify IV assumptions by checking if IV
inequality holds
But: Pearl’s inequality is not sufficient except for binary IV models;
see Bonet UAI 2001

https://arxiv.org/pdf/1302.4976.pdf
https://arxiv.org/pdf/1301.2258.pdf
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A “coupling” or “cloning” proof due to Robin Evans

Any discrete distribution P over (Z ,A,Y ) Markov to IV DAG ⇒

For each a ∈ A, able to construct a distribution Qa such that Y ⊥⊥ Z in
Qa and qa(a, y |z) = p(a, y |z) for every y ∈ Y and z ∈ Z

Z A Y

U

P

Z A A† Y

U

Qa

Under Qa, Y ⊥⊥ Z so for z 6= z ′

qa(y |z) = qa(y |z ′)⇒ qa(y |z) = qa(a, y |z ′) +
∑
a 6=a

qa(a, y |z ′)

⇒ qa(y |z) = p(a, y |z ′) +
∑
a 6=a

qa(a, y |z ′)

⇒ max
z∈Z

p(a, y |z) ≤ qa(y |z)⇒ max
a∈A

∑
y∈Y

max
z∈Z

p(a, y |z) ≤ 1



7/ 31

A “coupling” or “cloning” proof due to Robin Evans

Any discrete distribution P over (Z ,A,Y ) Markov to IV DAG ⇒

For each a ∈ A, able to construct a distribution Qa such that Y ⊥⊥ Z in
Qa and qa(a, y |z) = p(a, y |z) for every y ∈ Y and z ∈ Z

Z A Y

U

P

Z A A† Y

U

Qa

Under Qa, Y ⊥⊥ Z so for z 6= z ′

qa(y |z) = qa(y |z ′)⇒ qa(y |z) = qa(a, y |z ′) +
∑
a 6=a

qa(a, y |z ′)

⇒ qa(y |z) = p(a, y |z ′) +
∑
a 6=a

qa(a, y |z ′)

⇒ max
z∈Z

p(a, y |z) ≤ qa(y |z)⇒ max
a∈A

∑
y∈Y

max
z∈Z

p(a, y |z) ≤ 1



8/ 31

Generalizing IV inequality 1 – More general models

Theorem 2 (Theorem 4.2 of Evans IEEE MLSP 2012)

For any disjoint sets A,B,C ,D of observed vertices of a DAG G, if A
and B are d-separated by C in the corresponding SWIG by splitting node
D, then for any D = d, there must exist a distribution Qd under which
A ⊥⊥ B|C , compatible with p(a,b, d|c).

Under Qd, we can use A ⊥⊥ B|C to derive non-trivial inequalities

Special case: A : Z ,B : Y ,C : ∅,D : A in IV DAG

A sound criterion, but not necessarily complete (i.e. exhausting
latent-variable DAGs with inequality constraints)

https://arxiv.org/pdf/1209.2978.pdf
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Generalizing IV inequality – Other related works

• Kédagni & Mourifié Biometrika 2020: discrete treatment but general
IV and outcome

• Wang, Richardson, Robins, 2017 Biometrika: dealing with baseline
covariates (using very basic convex program and analysis)

• Gunsilius 2020: impossibility results for continuous treatment

• · · ·

https://academic.oup.com/biomet/article/107/3/661/5767137?login=true
https://academic.oup.com/biomet/article/104/1/229/2938060?login=true
https://arxiv.org/abs/1806.09517
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Beyond Bell-CHSH and IV models

A

B C

U1

U2

U3

“Triangle” model: possessing neither nontrivial (nested conditional)
independences, nor inequality constraints using Evans’ rule

But there are non-trivial inequality constraints!
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Triangle model

A

C B

U1

U2

U3

“Triangle” model: possessing neither nontrivial (nested conditional)
independences, nor inequality constraints using Evans’ rule

In fact, it induces the following constraints:

{p(A = C )− p(A 6= C )}+ {p(B = C )− p(B 6= C )}
≤ 1 + {p(A = 1)− p(A = 0)}{p(B = 1)− p(B = 0)}

together with its symmetrized version (over permutations of A,B,C )
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The inflation technique: Complete algorithm for finding
inequality constraints

• Theoretical physicists Elie Wolfe and colleagues recently solved the
completeness problem using an approach generalizing Robin Evans’
node-splitting idea, called “the inflation technique”

• They initially tried to solve the causal compatibility problem i.e.
check if the observed data distribution can be generated from a
given latent-variable causal DAG (that is, if violating the necessary
conditions implied by a latent-variable causal DAG)

• Opposite to deriving equality (algebraic) constraints for
latent-variable causal DAGs by latent projection to obtain ADMG,
one can instead augment the graph by introducing copies of
observables and latents, but also preserving ancestral relations!

https://arxiv.org/pdf/1707.06476
https://arxiv.org/pdf/1609.00672
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Inflation graph for Triangle model: purely spurious
correlation setting

A

C B

U1

U2

U3

“Triangle” model: possessing neither nontrivial (nested conditional)
independences, nor inequality constraints using Evans’ rule

Finding “injectable sets”: the subset C ′ of vertices in the inflated
graph H such that their corresponding original vertex sets C in the
original DAG G sat. HanH(C ′) = GanG(C)

If the subset C ′ of vertices in the inflated graph H is injectable, then
PC ′ = PC
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“Spiral” inflation of the “Triangle” model

Finding “injectable sets”: the subset C ′ of vertices in the inflated
graph H such that their corresponding original vertex sets C in the
original DAG G sat. HanH(C ′) = GanG(C)

If the subset C ′ of vertices in the inflated graph H is injectable, then
PC ′ = PC
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“Capped” inflation of the “Triangle” model

Finding “injectable sets”: the subset C ′ of vertices in the inflated
graph H such that their corresponding original vertex sets C in the
original DAG G sat. HanH(C ′) = GanG(C)

If the subset C ′ of vertices in the inflated graph H is injectable, then
PC ′ = PC
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Trivial inequalities on inflated graph ⇒ Non-trivial
inequalities on original graph

• For Triangle model, three observed vertices A,B,C

• For Boolean random variables, we have trivial inequality (systematic
proof by LP):

{Pr(A = C)− Pr(A 6= C)}+ {Pr(B = C)− Pr(B 6= C)}
≤ 1 + {Pr(A = B)− Pr(A 6= B)}

• Obviously for “Cut” inflated graph H, we have

{Pr(A(1) = C (0))− Pr(A(1) 6= C (0))}+ {Pr(B(0) = C (0))− Pr(B(0) 6= C (0))}

≤ 1 + {Pr(A(1) = B(0))− Pr(A(1) 6= B(0))}
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{Pr(A(1) = C (0))− Pr(A(1) 6= C (0))}+ {Pr(B(0) = C (0))− Pr(B(0) 6= C (0))}

≤ 1 + {Pr(A(1) = B(0))− Pr(A(1) 6= B(0))}

• Since {A(1),C (0)}, {B(0),C (0)}, {A(1)}, {B(0)} are injectable in Cut
graph: non-trivial inequality

{Pr(A = C)− Pr(A 6= C)}+ {Pr(B = C)− Pr(B 6= C)}
≤ 1 + {Pr(A = 1)− Pr(A = 0)}{Pr(B = 1)− Pr(B = 0)}
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Generally speaking: for arbitrary pure-spurious correlation
settings

• Draw inflation graphs

• Identify the “AI-expressible sets”: sets that are disjoint union of
d-separated injectable sets

• Find trivial inequalities satisfied by AI-expressible sets (often by LP)
but leverage the d-separations

• Map back to the original graph as nontrivial inequality
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IV model using inflation?

• There are non-spurious correlations among observed vertices for IV
model

Z A Y

U

• Inflation? Only introduced for purely spurious correlation scenarios

• Fortunately, for all exogenous vertices, we could fix them without
changing the essential structure of the latent variable DAG

Z A Y

U

so we can look at the conditional distributions p(A,Y |Z = z)
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IV model using inflation?
• Fortunately, for all exogenous vertices, we could fix them without

changing the essential structure of the latent variable DAG

Z A Y

U

so we can look at the conditional distributions p(A,Y |Z = z)

• Then unpacking to eliminate all dependencies among observed
vertices

A(z = 0)
A(z = 1)

Y (a = 0)
Y (a = 1)

U

which becomes a purely-correlated scenario after unpacking
satisfying

p(A = a,Y = y |Z = z) = punpacking(A(z) = a,Y (a) = y), a, z ∈ {0, 1}2
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IV model using inflation?
• Then unpacking to eliminate all dependencies among observed

vertices

A(z = 0)
A(z = 1)

Y (a = 0)
Y (a = 1)

U

which becomes a purely-correlated scenario after unpacking
satisfying

p(A = a,Y = y |Z = z) = punpack(A(z) = a,Y (a) = y), a, z ∈ {0, 1}2

• Deriving IV inequality? Now easy without even resorting to the
inflation technique! See R code “bound.R”

max
a

∑
y

max
z

p(A = a,Y = y |Z = z)

s.t.
∑

a0,a1,y0,y1

punpack(A(z = 0) = a0,A(z = 1) = a1,Y (a = 0) = y0,Y (a = 1) = y1) = 1

· · ·
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Completeness?

• The inflation technique is complete, but in the following weak sense:
For arbitrary pure-spurious correlation models with L latent
variables, there exists an inflation hierarchy indexed by an order m,
when m→∞, if P is not compatible with the causal graph G, then
the m-th order inflation can witness it if

inf
Q∼G
‖P − Q‖ &

√
L

m

• m-th order inflation?? Clone each latent variable m times and then
clone each observed variable Lmv where Lv is the number of latent
variables influencing the observed variable v

• Overkill? Probably yes! For the following trivial case: U →A with
P(A = 1)P(A = 0) ≤ 1

4 , solving m-th order inflation gives us

1

2

2m

4m − 2
>

1

4
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the m-th order inflation can witness it if

inf
Q∼G
‖P − Q‖ &

√
L

m

• m-th order inflation?? Clone each latent variable m times and then
clone each observed variable Lmv where Lv is the number of latent
variables influencing the observed variable v

• Overkill? Probably yes! For the following trivial case: U →A with
P(A = 1)P(A = 0) ≤ 1

4 , solving m-th order inflation gives us

1

2

2m

4m − 2
>

1

4
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Summary

• Inequality constraints induced by causal models are difficult to
exhaust

• Inflation techniques are the only approach working for arbitrary
causal models in asymptopia

• Open problem: Could there be a short-cut?
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classical-quantum gap?
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Earliest instance: Tsirelson bound

Alice’s

observable X

Alice’s

outcome A

Bob’s

outcome B

Bob’s

observable Y

source

Bell-CHSH inequality falsifies the hidden-variable locality hypothesis
predicted by classical physics; yet it relies on the “freedom of
choice” hypothesis (exogeneity of Alice’s and Bob’s choice of
observable); see Chaves et al. 2021
Quantum causal model (at least as formulated in the current
literature): latent variables are quantum channels and observed
variables are measuring quantum variables (so upon measurement,
collapse)

SemiDefinite Programming (SDP)! See Wehner 2006 PRA

But in general a polynomial programming problem so quantum
causal compatibility is computationally hard! Exists SDP relaxation
to solve it approximately

https://arxiv.org/pdf/2105.05721.pdf
https://arxiv.org/pdf/quant-ph/0510076.pdf
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Classical case: For simplicity assume both observable and outcome
are {−1,+1}-valued then (immediate by unpacking, see R code
“bound.R”)

E[AB|X = Y = 0]+E[AB|X = 0,Y = 1]+E[AB|X = 1,Y = 0]−E[AB|X = Y = 1] ≤ 2

This is the form of CHSH

SemiDefinite Programming (SDP)! See Wehner 2006 PRA

But in general a polynomial programming problem so quantum
causal compatibility is computationally hard! Exists SDP relaxation
to solve it approximately

https://arxiv.org/pdf/quant-ph/0510076.pdf
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Earliest instance: Tsirelson bound

Alice’s

observable X

Alice’s

outcome A

Bob’s

outcome B

Bob’s

observable Y

source

Quantum case: qubits are prepared in the following entangled states
in the order of Alice and Bob

|ψ〉 =
1
√
2
|0〉 ⊗ |1〉︸ ︷︷ ︸

|ψ1〉

−
1
√
2
|1〉 ⊗ |0〉︸ ︷︷ ︸

|ψ2〉

=
1
√
2

(0
1

)
⊗
(1
0

)
−

1
√
2

(1
0

)
⊗
(0
1

)

Alice and Bob measure the outcome with different unitary matrices

Alice:

(
1 0
0 −1

)
︸ ︷︷ ︸

X=0

or

(
0 1
1 0

)
︸ ︷︷ ︸

X=1

Bob:

(
− 1√

2
− 1√

2

− 1√
2

1√
2

)
︸ ︷︷ ︸

Y=0

or

(
1√
2

− 1√
2

− 1√
2
− 1√

2

)
︸ ︷︷ ︸

Y=1

Then |ψ〉 induces a density matrix (p.s.d.) % = 1
2 |ψ1〉〈ψ1| + 1

2 |ψ2〉〈ψ2|, which further
gives expectation of observable C = A⊗ B to be Tr(%C). Following commutativity of trace

〈ψ|A0 ⊗ B0|ψ〉 = 〈ψ|A0 ⊗ B1|ψ〉 = 〈ψ|A1 ⊗ B0|ψ〉 =
1
√
2
, 〈ψ|A1 ⊗ B1|ψ〉 = −

1
√
2

⇒ 〈ψ|A0 ⊗ B0|ψ〉 + 〈ψ|A0 ⊗ B1|ψ〉 + 〈ψ|A1 ⊗ B0|ψ〉 − 〈ψ|A1 ⊗ B1|ψ〉 = 2
√
2 > 2

SemiDefinite Programming (SDP)! See Wehner 2006 PRA
But in general a polynomial programming problem so quantum
causal compatibility is computationally hard! Exists SDP relaxation
to solve it approximately

https://arxiv.org/pdf/quant-ph/0510076.pdf
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Any guess on how to prove the quantum CHSH bound 2
√

2 in a
more first-principled way like LP? See “bound.R”

SemiDefinite Programming (SDP)! See Wehner 2006 PRA

But in general a polynomial programming problem so quantum
causal compatibility is computationally hard! Exists SDP relaxation
to solve it approximately

https://arxiv.org/pdf/quant-ph/0510076.pdf
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Looking ahead
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What could be a good attitude towards causal inference?

I quote the following paragraph written by Ogburn, Shpitser, Tchetgen
Tchetgen 2019 (a very angry rant because they were super annoyed by a
paper written by famous machine learning researcher David Blei):

One of the most important roles of causal inference in statistics
and data science is to be transparent about the strong, usually
untestable assumptions under which causal inference is possible
(Pearl, 2000; Robins, 2001). The burden for transparency about
assumptions is arguably greater in causal inference than in other
areas of statistics, because it is crucial that scientists and con-
sumers of research, e.g. policy makers or doctors, have the tools
to reason about whether an association is in fact causal...

but unfortunately – we wish this were not the case! – it is im-
possible to identify causal effects in the presence of unmeasured
confounding with nonparametric or empirically verifiable assump-
tions.

https://arxiv.org/pdf/1910.05438.pdf
https://arxiv.org/pdf/1910.05438.pdf
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What could be a good attitude towards causal inference?

Sounds hopeless? But before 1990’s, causality is not even allowed to be
studied in statistics

If you feel like having better ideas than what people have had, it could be
a great thing! But do read a lot of papers before drawing the conclusion
that some idea has not been done before (a lesson of David Blei and
colleagues)

If you feel like the current methodology cannot solve your applied
problem, it could be even a greater thing!
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Important aspects not yet covered in this course

• Randomization-based statistical inference

• Interference and peer effect

• Study design: optimal design, rerandomization, design under
interference, large-scale (dynamic) A/B testing

• Causal inference with complex data structures: Time series data,
Functional data, Data that arises from dynamical systems etc.

• Causal invariance from multiple environments

• How to combine real world evidence with RCT evidence

• AI system with causality component (covered to some extent in Kun
Kuang’s guest lecture)
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Randomization inference

• Most cases, we view data as a random draw from some unknown
probability distribution P

• But in well-designed studies, we can take a different view

• For example, if we conduct a randomized trial on an exercise
incentive program for college students in China, then the
super-population is a finite big sample N where N is the total
number of college students in China

• The subset of students that we conduct trial on are a random draw
of size n from all N students with n < N

• No modeling/distributional assumption on the data at all! All the
randomness comes from the sampling process

• What is the estimand? What is the estimator? How to show the
estimator is good without a reference true distribution P?
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Interference

• Renew potential outcomes/counterfactuals by dropping SUTVA

Yi (a1, · · · , an), i = 1, · · · , n

• Even if you can run an RCT, how do you design randomization
strategy to preserve the network structure?

• How to make sense the effect of my own treatment vs. the effect of
others’ treatment?

• What is the limit? How dense the network can be so that we can
still learn something? What if the network is unknown?
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RWE

• In exercises, we have seen a made-up scenario where trial might not
be ideal for decision making but how do you optimally combine
RWE with trial data?

• In complex and dynamic scenario, how to combine RWE and trial?
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Causal invariance

• Initiated in the seminal work Peters, Bühlmann, Meinshausen 2016
JRSS-B (also read the Discussions and Rejoinder)

• Axiom: “causal relationship is invariant/stable across different
environments”

• Math definition: If a subset S ⊆ V is causal for a response Y , then
for all different data distributions (environments) e ∈ E (a family of
environments), Y e = g(V e

S , u
e) with g invariant across different

environments E and ue ∼ Fu with Fu invariant across E

https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12167
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/rssb.12167
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Causal invariance
• Initiated in the seminal work Peters, Bühlmann, Meinshausen 2016

JRSS-B (also read the Discussions and Rejoinder)

• Axiom: “causal relationship is invariant/stable across different
environments”

• Related to data combination (many different trials + many different
observational studies, or more precisely many different interventions
+ many different passively observed data, e.g. large-scale CRISPR
gene-knockdown experiments are a typical instance)

• Math definition: If a subset S ⊆ V is causal for a response Y , then
for all different data distributions (environments) e ∈ E (a family of
environments), Y e = g(V e
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The End! I covered quite a lot of grounds of
causality. Hope Ya’ll learnt something useful here

and there!


