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One motivating example

• Labor economists have long been interested in determining the
causal effect of education on wage

• However, no randomized trials can be conducted to randomly assign
people to or not to get higher education

• The only hope is to rely on observational studies

• Consider the following causal DAG:

education wage

ability

• Obviously, if the data does not contain measurements of ability
(almost impossible to measure it anyway), association between
education and wage is not causation
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One motivating example

• Labor economists have long been interested in determining the
causal effect of education on wage

• However, no randomized trials can be conducted to randomly assign
people to or not to get higher education

• The only hope is to rely on observational studies

• Instead, Card (1995) consider the following causal DAG:

near college? (C) education (E) wage (W)

ability

• Can we identify τE→W , since τB→W is composed of τB→E and
τE→W , and both causations, τB→W and τB→E , are associations?

https://davidcard.berkeley.edu/papers/geo_var_schooling.pdf
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A real data analysis

let’s analyze Card’s data

Example 1

1 library(ivreg)

2 data("SchoolingReturns", package = "ivreg")

3

4 ## simple linear regression

5 edu_wage_ols <- lm(log(wage) ~ education + poly(experience ,

2, raw = TRUE) + ethnicity + smsa + south , data =

SchoolingReturns)

6 summary(edu_wage_ols)

7

8 ## IV regression

9 edu_wage_iv <- ivreg(log(wage) ~ education + poly(experience

, 2, raw = TRUE) + ethnicity + smsa + south |

nearcollege + poly(age , 2, raw = TRUE) + ethnicity +

smsa + south , data = SchoolingReturns)



6/ 88

Another motivating example: the role of lipoprotein
subfractions on heart diseases

• Lipoprotein subfractions have long been conjectured to play an
essential role in the development or prevention of heart diseases

• But people reported conflicting data analysis, indicating mixed
information on whether it is beneficial or detrimental to heart based
on observational studies

• The causal DAG:

Lipid (L) Heart disease (H)

U
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Another motivating example: the role of lipoprotein
subfractions on heart diseases

• Lipoprotein subfractions have long been conjectured to play an
essential role in the development or prevention of heart diseases

• But people reported conflicting data analysis, indicating mixed
information on whether it is beneficial or detrimental to heart based
on observational studies

• The IV “revolution” in genetics, led by George Davey Smith from
University of Bristol

DNA L H

U

the random mating process roughly renders our DNA as a random
variable, not influenced by other factors (not exactly though);
maybe, based on biological knowledge, the particular mutation does
not biologically affect our heart

https://www.bristol.ac.uk/people/person/George-Davey Smith-285dce3f-4498-4e97-82de-250a865b4483/


8/ 88

ideal:

DNA L H

U

reality (REF: Almost exact Mendelian randomization)

https://arxiv.org/pdf/2208.14035.pdf
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Another motivating example: incentive or persuasion
mechanism in behavior economics

• A central agent (e.g. Uber) may want to “manipulate” other agents
(e.g. drivers and passengers) to increase utility

• However, the central agent cannot directly dictate what other agents
do – the only thing the central agent can do is to provide incentive
(e.g. money prize) or persuasion (e.g. revealing certain information
of the states of the world)

• The incentive/persuasion itself may have no direct effect on the final
utility

• The causal DAG

incentive/persuasion action profit

U



10/ 88

Another motivating example: effects of price on quantity

• IV was actually invented by Philip Wright (Sewell Wright’s father) in
1928

• Wright wanted to study the effect of price on demand: e.g. to cut
the smoking population by half, what the price of cigarette should
have been?

• The supply-demand model (from theoretical economics, possibly
quite ideal):

logQ = β0 + β1 logP + U

U is not independent of logP (from economic theory, both
determined by supply and demand curve), creating the problem of
“endogeneity”

• Wright concluded to learn β1, one needs to find some extra
information to solve this “endogeneity” problem
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Some other real examples

• military lottery, actually military service/war experience,
psychological health (famous Vietnam war study)

• randomly giving gifts, taking covid vaccine, risk of dying from covid

• randomly giving money to students doing less well in school, actually
attending school with more enthusiasm, academic achievement
(famous field experiments conducted by super-star economist Roland
Fryer)

• etc.
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Another motivating example: RCT with non-ignorable
non-compliance

• Z : randomized treatment assignment

• A: actual treatment received

• Y : outcome

We are interested in estimating τ = E[Y (a = 1)− Y (a = 0)] but
experimental units might not compile with the doctor’s assignment, and
the non-compliance pattern might not be explained by observed data

This story tells us:
(1) Z causes A
(2) No unmeasured confounding between Z and {A,Y }
(3) Z causes Y only through A
Z satisfying the above three assumptions is called an “Instrumental
Variable” (IV); IV is simply an IMPERFECT INTERVENTION!
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One analysis strategy: intention-to-treat (ITT) analysis

• ITT analysis simply computes

E[Y |Z = 1]− E[Y |Z = 0]

• But do you think ITT analysis really answer our scientific question of
interest?

• After this course, DO NOT CONFUSE ITT ANALYSIS AS IF IT IS
CAUSAL!
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The Instrumental Variable DAG/SWIG

Z A Y

U

Z A a Y (a)

U

• From SWIG, one reads Y (a) ⊥⊥ Z so E[Y (a)] = E[Y (a)|Z ] for all a
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Core assumptions of IV
For simplicity we silence conditioning on the baseline confounders X

Z is an IV if

• relevance: Z 6⊥⊥ A

• exogeneity (no unmeasured confounders between Z and A and
between Z and Y ):

Z ⊥⊥ (A(z),Y (z , a)) ∀a, z

[or can be relaxed to Z ⊥⊥ Y (z , a)]

• exclusion restriction (no direct effect from Z to Y ):

Y (z , a) ≡ Y (a) ∀a, z

Z A a Y (a)

U

Z z A(z) a Y (a)

U
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IV point identification: Linear SEM illustration

Let’s consider the following linear SEM related to the IV DAG/SWIG:
assuming U has E[U] = 0

Y = τA + ηU + εY

A = πZ + βU + εA

Z = εZ ,

εY ⊥⊥ εA ⊥⊥ εZ ⊥⊥ U

Then

E[A|Z ] = πZ + βE[U|Z ] = πZ + βE[U] = πZ

E[Y |Z ] = τE[A|Z ] + ηE[U|Z ] = τπZ + ηE[U] = τπZ = γZ

(called “reduced-form” regression in econometrics)

so
τ =

γ

π
, assuming π 6= 0

This is the so-called 2SLS estimator of ATE under linear IV setting
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IV point identification: nonparametric result

Based on the three core IV assumptions, in particular Y (a) ⊥⊥ Z , can we
identify E[Y (a)] or the ACE E[Y (1)]− E[Y (0)]?

Nobel prize paper: Imbens & Angrist 1994

Consider binary instrument Z ∈ {0, 1}

Compliance table

subgroups A(z = 1) A(z = 0)
always taker 1 1
never taker 0 0

complier 1 0
defier 0 1

https://business.baylor.edu/scott_cunningham/teaching/imbens--angrist---late-1994.pdf
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IV point identification: nonparametric result

Compliance table

subgroups A(z = 1) A(z = 0)
always taker 1 1
never taker 0 0

complier 1 0
defier 0 1

Without non-compliance, by Y (a) ⊥⊥ Z ,

E[Y (a)] = E[Y (a)|Z = a] = E[Y (a)|Z = a,A(z) = a]

= E[Y |Z = a,A = a]

With non-compliance, unidentified in general

E[Y (a)] = E[Y (a)|Z = z]

⇒ E[Y (a)] = E[Y |Z = z ,A = a]

+ P(A(z) = 1− a)︸ ︷︷ ︸
P(A=1−a|Z=z)

{E[Y (a)|Z = z ,A = 1− a]︸ ︷︷ ︸
unidentified

−E[Y |Z = z ,A = a]}
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IV point identification: nonparametric result

Derivation:

E[Y (a)] = E[Y (a)|Z = z]

= E[Y (a)|Z = z ,A(z) = a]P(A(z) = a|Z = z)

+ E[Y (a)|Z = z ,A(z) = 1− a]P(A(z) = 1− a|Z = z)

= E[Y |Z = z ,A = a]P(A = a|Z = z)

+ E[Y (a)|Z = z ,A(z) = 1− a]P(A = 1− a|Z = z)

= E[Y |Z = z ,A = a]− E[Y |Z = z ,A = a]P(A = 1− a|Z = z)

+ E[Y (a)|Z = z ,A(z) = 1− a]P(A = 1− a|Z = z)

= E[Y |Z = z ,A = a]

+ P(A = 1− a|Z = z){E[Y (a)|Z = z ,A = 1− a]− E[Y |Z = z ,A = a]}

by far, we have used every IV conditions but we still have a
non-identifiable counterfactual quantity E[Y (a)|Z = z ,A(z) = 1− a]
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A more essential way of understanding non-identifiability

The following strategy is always helpful: counting free parameters by
taking everything to be {0, 1}-valued

Since A,Z ∈ {0, 1}2, we have only four possible values that can be
calculated from the observed data E[Y |Z = 0,A = 0],
E[Y |Z = 0,A = 1], E[Y |Z = 1,A = 0], E[Y |Z = 1,A = 1]
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IV point identification: 1st attempt

Point identification of τ needs extra modeling assumptions beyond (1) -
(3)

One possibility is constant/homogeneous treatment effect assumption:

Y (1)− Y (0) = τ

Then

E[Y (a)] = E[Y (a)|Z = z]

⇒ E[Y (a)] = E[Y |Z = z ,A = a]

+ P(A(z) = 1− a)︸ ︷︷ ︸
P(A=1−a|Z=z)

{E[Y (a)|Z = z ,A = 1− a]− E[Y |Z = z ,A = a]}

⇒ E[Y (1)] = E[Y |Z = z ,A = 1]

+ P(A = 0|Z = z){E[Y |Z = z ,A = 0] + τ − E[Y |Z = z ,A = 1]}
E[Y (0)] = E[Y |Z = z ,A = 0]

+ P(A = 1|Z = z){E[Y |Z = z ,A = 1]− τ − E[Y |Z = z ,A = 0]}
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IV point identification: 1st attempt
∀ z ∈ {0, 1}:

E[Y (1)] = E[Y |Z = z ,A = 1]

+ P(A = 0|Z = z){E[Y |Z = z ,A = 0] + τ − E[Y |Z = z ,A = 1]}
E[Y (0)] = E[Y |Z = z ,A = 0]

+ P(A = 1|Z = z){E[Y |Z = z ,A = 1]− τ − E[Y |Z = z ,A = 0]}

τ = E[Y (1)]− E[Y (0)]

= P(A = 0|Z = z)︸ ︷︷ ︸
1−E[A|Z=z]

τ + P(A = 1|Z = 1− z)︸ ︷︷ ︸
E[A|Z=1−z]

τ

+ P(A = 0|Z = z)E[Y |Z = z ,A = 0] + P(A = 1|Z = z)E[Y |Z = z ,A = 1]︸ ︷︷ ︸
E[Y |Z=z]

− E[Y |Z = 1− z ]

So: ATE τ can be computed as 2SLS (two-stage least square)

τ =
E[Y |Z = z ]− E[Y |Z = 1− z ]

E[A|Z = z ]− E[A|Z = 1− z ]
=

second stage LS coefficient

first stage LS coefficient
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IV point identification: 1st attempt alternative derivation
(1) Causal structural assumption gives us Y (a) ⊥⊥ Z , implying

E[(Y (0)− E[Y (0)])h(Z )] = 0 ∀h

(2) Modeling assumption gives us

Y (0) = Y − τA
⇒ E[Y (0)] = E[Y ]− τE[A]

(3) Combining (1) + (2):

E[(Y − τA− E[Y ] + τE[A])h(Z )] = 0

⇒τ =
E[Yh(Z )]− E[Y ]E[h(Z )]

E[Ah(Z )]− E[A]E[h(Z )]
=

Cov(Y , h(Z ))

Cov(A, h(Z ))

Choose h(Z ) = E[A|Z ] (first stage regression), we have

τ =
Cov(Y ,E[A|Z ])

Cov(A,E[A|Z ])
≡ E[Y |Z = 1]− E[Y |Z = 0]

E[A|Z = 1]− E[A|Z = 0]

(two-stage least square (2SLS))
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IV point identification: 2nd attempt, monotonicity
assumption

Compliance table

subgroups A(z = 1) A(z = 0)
always taker 1 1
never taker 0 0

complier 1 0
defier 0 1

E[Y (a)] = E[Y (a)|A(1) = 1,A(0) = 1]P(A(1) = 1,A(0) = 1)

+ E[Y (a)|A(1) = 0,A(0) = 0]P(A(1) = 0,A(0) = 0)

+ E[Y (a)|A(1) = 1,A(0) = 0]P(A(1) = 1,A(0) = 0)

+ E[Y (a)|A(1) = 0,A(0) = 1]P(A(1) = 0,A(0) = 1)
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Ruling out defiers: what can we identify?

E[Y (a)] = E[Y (a)|A(1) = 1,A(0) = 1]P(A(1) = 1,A(0) = 1)

+ E[Y (a)|A(1) = 0,A(0) = 0]P(A(1) = 0,A(0) = 0)

+ E[Y (a)|A(1) = 1,A(0) = 0]P(A(1) = 1,A(0) = 0)

+ E[Y (a)|A(1) = 0,A(0) = 1]P(A(1) = 0,A(0) = 1)

= E[Y (a)|A(1) > A(0)]P(A(1) > A(0))
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E[Y |Z = 1]− E[Y |Z = 0]
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= P(A(1) = 1)− P(A(1) = 1,A(0) = 1)

= P(A(1) = 1)− P(A(0) = 1) P(A(1) = 1|A(0) = 1)︸ ︷︷ ︸
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= P(A(1) = 1)− P(A(0) = 1)

= E[A|Z = 1]− E[A|Z = 0]
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IV point identification: 2nd attempt, monotonicity
assumption

So:

E[Y (1)− Y (0)|A(1) > A(0)] =
E[Y |Z = 1]− E[Y |Z = 0]

E[A|Z = 1]− E[A|Z = 0]

E[Y (1)− Y (0)|A(1) > A(0)] is identified by 2SLS!

But what is E[Y (1)− Y (0)|A(1) > A(0)]? The CATE conditioning on
A(1) > A(0)

A(1) > A(0): compliers! So 2SLS identifies CATE among compliers,
termed by Imbens and Angrist as “Local Average Treatment Effect”
(LATE)

This important conceptual leap together with extremely impactful
applications in labor economics wins the Nobel prize
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IV point identification: Can we identify ATE?

• Yes but under alternative untestable identification assumptions:
Several examples (the following conditions can be relaxed to ones
conditioning on all the observed covariates)

• Robins 1994: “no instrument-treatment interaction”

(1) Three core IV assumptions

(2) no current treatment value interaction
E[Y (1)− Y (0)|Z = z ,A = a] = γ∗ · a

• Wang and Tchetgen Tchetgen 2018: “no unmeasured
confounder-treatment interactions”

E[Y (1)− Y (0)|U] = E[Y (1)− Y (0)]

• In both cases, 2SLS helps identify ATE

https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/correcting-1994.pdf
https://arxiv.org/pdf/1611.09925.pdf
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IV point identification: Can we identify ATE?

derivation under “no instrument-treatment interaction”: define
mimicking counterfactual

Ỹ (γ) := Y − γ · A

by SNMM, we have E[Ỹ (γ∗)|Z ,A] = E[Y (0)|Z ,A]

by exclusion restriction, we have

E[Ỹ (γ∗)|Z ] = E[Y (0)|Z ] = E[Y (0)] = E[Ỹ (γ∗)]
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derivation under “no instrument-treatment interaction”: define
mimicking counterfactual

Ỹ (γ) := Y − γ · A

by SNMM, we have E[Ỹ (γ∗)|Z ,A] = E[Y (0)|Z ,A]

by exclusion restriction, we have

E[Ỹ (γ∗)|Z ] = E[Ỹ (γ∗)]

⇒ E
[
(Ỹ (γ∗)− E[Ỹ (γ∗)])h(Z )

]
= 0,∀ h

⇒ E [(Y − γ∗ · A− E[Y ] + γ∗E[A])Z ] = 0

⇒ γ∗ =
E[(Y − E[Y ])Z ]

E[(A− E[A])Z ]
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The issue of weak IV

• 2SLS is also called “Wald estimand” because it is a ratio

• Since it is a ratio, when the denominator is small, 2SLS will be
gradually becoming more and more ill-defined/ill-posed

• Can we detect weak IV? Yes, this is just a (conditional)
independence test between A and Z (possibly given observed
covariates X )

• Economists strongly recommend to report the first-stage F-statistic
whenever using 2SLS (simply output by every regression model in R)

• Convention: “if F-statistic is bigger than 10, one can safely use
2SLS”
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Many IVs

• We have seen the following: One IV can be used to identify the
causal effect of one endogenous exposure

• What if we have multiple, say K endogenous exposures?

• In general, one needs to get at least one IV per endogenous exposure
– in economics, this is called the “just-identified” case

• If you have less IVs than needed, it is called the “under-identified”
case

• If you have more IVs than needed, it is called the “over-identified”
case
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What to do with many IVs?
• To illustrate the main idea, let’s again consider the linear SEM:

Y = τA + ηU + εY

A = π>Z + βU + εA

with Z now a k-dimensional vector

• Let’s write down the n-sample version of the above linear SEM

Yn×1 = An×1τ + Uη + εY = Aτ + ξ

An×1 = Zn×kπ + Uβ + εA = Zπ + δ

• Denote PZ = Z (Z>Z )−1Z>, the following estimator is referred to
as the 2SLS with the presence of many IVs

τ̂2SLS =
A>PZY
A>PZA

=
A>PZ (Aτ + ξ)

A>PZA
= τ +

A>PZξ

A>PZA︸ ︷︷ ︸
mean zero
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Alternative popular estimator: Limited Information
Maximum Likelihood (LIML)

• Denote PZ = Z (Z>Z )−1Z>, the following estimator is referred to
as the 2SLS with the presence of many IVs

τ̂2SLS =
A>PZY
A>PZA

= τ +
A>PZξ

A>PZA

• The biased OLS:

τ̂OLS =
A>Y
A>A

= τ +
A>ξ
A>A

• The LIML: let P⊥Z = I − PZ

τ̂LIML =
A>(I − λP⊥Z )Y
A>(I − λP⊥Z )A

=
A>{(1− λ)I + λPZ}Y
A>{(1− λ)I + λPZ}A

= τ +
A>{(1− λ)I + λPZ}ξ
A>{(1− λ)I + λPZ}A
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LIML’s λ

• The LIML: let P⊥Z = I − PZ

τ̂LIML =
A>(I − λP⊥Z )Y
A>(I − λP⊥Z )A

=
A>{(1− λ)I + λPZ}Y
A>{(1− λ)I + λPZ}A

= τ +
A>{(1− λ)I + λPZ}ξ
A>{(1− λ)I + λPZ}A

• It can be “roughly” viewed as a linear combination between OLS
and 2SLS

• How to set λ? LIML particularly chooses the following strategy: λ is
the smallest root of the following equation

det
[
(A Y )>2×n

{
I − λP⊥Z

}
(A Y )n×2

]
= 0
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The issue of many weak IVs
• When IVs are weak, it does not help to have many of them...

• Because otherwise, one could have generated so many random
noises to serve as IVs to completely solve the endogeneity problem

• What happens when many IVs are weak? for simplicity, let’s say
Z ⊥⊥ A so we also have Z ⊥⊥ ξ; we also have E[PZ ] ≈ I

τ̂2SLS = τ +
A>PZξ

A>PZA

≈ τ +
E[A>PZξ]

E[A>PZA]

= τ +
E[A>E[PZ ]ξ]

E[A>E[PZ ]A]
= τ +

E[A>ξ]

E[A>A]

≈ τ +
A>ξ
A>A

= τ̂OLS

• People tend to view LIML as a more robust version of 2SLS under
many weak IVs
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Joke about IVs

• A joke among economists: it takes an economist’s life-time to find a
good IV

• In practice, it is difficult to find IVs for a particular social science or
economic problem

• But in clinical medicine and biology, IVs seem to be much easier to
find, such as non-compliance in clinical trials

• And more recently, Mendelian randomization (MR) that makes
biologists both happy and sad ...
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Mendelian Randomization (MR): A natural IV

• Suppose we are interested in estimating the effect of lipid level in
blood (A) on heart disease (Y )

• We have a bunch of SNPs Z measured by DNA sequencing
technology

• Are SNPs good IV candidate?

• Probably yes due to Mendelian randomization so exogeneity is
satisfied but might still be violated when population stratification
happens: invalid IV

• Probably not because SNPs might have multiple functions
(pleiotropy) so Z might directly cause Y : invalid IV

• Probably not due to GWAS study we kind of know Z is associated
with A: weak IV
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General strategies for dealing with weak IVs in MR

• In general, assume linear treatment effect (not necessarily
completely linear model)

• Weak IV (A− Z weak dependence):

• Filter out weak IVs by hypothesis testing using F -statistic:
Andrews, Stock, Sun Annual Reviews of Econometrics 2019

• Aggregation smartly: Ye, Shao, Kang AoS 2021
• Alternative modeling strategy by random effect model: Zhao,

Chen, Wang, Small IJE 2019

https://scholar.harvard.edu/files/stock/files/andrews_stock_sun_wirev_011119.pdf
https://arxiv.org/abs/1911.09802
https://academic.oup.com/ije/article/48/5/1478/5531250?login=true
https://academic.oup.com/ije/article/48/5/1478/5531250?login=true
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General strategies for dealing with invalid IVs in MR

• In general, assume linear treatment effect (not necessarily
completely linear model)

• Invalid IV (violation of exogeneity):

• Majority rule: Kang et al. JASA 2016, less than 50% of IVs are
invalid

• Plurality rule: Guo et al. JRSS-B 2018, number of valid IVs >
the largest number of invalid IVs giving the same effect
estimates

• Orthogonality between Z → A effects and Z → Y direct effects
(Instrument Strength Independent of Direct Effect or InSIDE):
MR-Egger (essentially a meta-analysis)

• GENIUS: Sun, Tchetgen Tchetgen, Walter Stat. Sci. 2020

https://arxiv.org/pdf/1401.5755.pdf
https://arxiv.org/pdf/1401.5755.pdf
https://academic.oup.com/ije/article/44/2/512/754653
https://arxiv.org/pdf/1709.07779.pdf
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Bidirectional IV/MR: Time ordering

• MR can also be used to orient undirected edges of ADMG with
uncertainty

• Simple case:

Za A Y Zy

• Difficult to handle invalid IVs

• See Li and Ye, 2022 for some recent progress on testing if the effects
are zero

https://arxiv.org/pdf/2203.06887.pdf
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Proximal causal inference or negative controls
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Proximal causal learning (motivated from negative control
in experimental biology)

REF: Tchetgen Tchetgen, Ying, Cui, Shi, Miao. An Introduction to
Proximal Causal Learning.

Z X W

A Y

U

W : proxy of Y ; Z : proxy of A

In the above DAG, τ = E[Y (1)− Y (0)] is point identifiable without
modeling assumptions, but under some extra conditions

https://arxiv.org/pdf/2009.10982.pdf
https://arxiv.org/pdf/2009.10982.pdf
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Application of proximal causal learning

• Genomics: CRISPR-Cas9 gene-perturbation experiments – often we
do not know exactly

• Environmental health:

• Proxies can also be viewed as the measurements of the true
underlying biological mechanisms
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Proximal causal learning comes from negative control

W

U

A Y

W : negative control outcome (NCO), not causally affected by A
Inspired from experimental biology: always compare to something that is
known not to be affected by the chemical treatment
e.g. Y : death due to lung cancer, A: smoking, W : non-smoking related
death (e.g. diabetes)

Intuition: any difference of W between A = 1 and A = 0 is due to U
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Illustration via linear models

W

U

A Y

E[Y |A,U] = βAYA + βUYU

E[W |A,U] = βUWU

The above equations imply the following linear models over observables:

E[Y |A] = βAYA + βUYE[U|A]

E[W |A] = βUWE[U|A]

⇒ E[Y |A] = βAYA +
βUY
βUW

E[W |A]

When assuming βUY

βUW
is known, we can recover βAY



48/ 88

Illustration via linear models

W

U

A Y

E[Y |A,U] = βAYA + βUYU

E[W |A,U] = βUWU

The above equations imply the following linear models over observables:

E[Y |A] = βAYA + βUYE[U|A]

E[W |A] = βUWE[U|A]

⇒ E[Y |A] = βAYA +
βUY
βUW

E[W |A]

When assuming βUY

βUW
is known, we can recover βAY



48/ 88

Illustration via linear models

W

U

A Y

E[Y |A,U] = βAYA + βUYU

E[W |A,U] = βUWU

The above equations imply the following linear models over observables:

E[Y |A] = βAYA + βUYE[U|A]

E[W |A] = βUWE[U|A]

⇒ E[Y |A] = βAYA +
βUY
βUW

E[W |A]

When assuming βUY

βUW
is known, we can recover βAY



49/ 88

Illustration via linear models

W

U

A Y

E[Y |A,U] = βAYA + βUYU

E[W |A,U] = βUWU

So NCO is quite like IV: helpful but not enough for point identification
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50% of proximal causal learning: double negative control

What if in addition we have a negative control treatment (NCT) Z?

Z U W

A Y

Q: Is Z a valid IV?

Obviously not
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50% of proximal causal learning: double negative control

Z U W

A Y

E[Y |A,Z ,U] = βAYA + βUYU

E[W |A,Z ,U] = βUWU

E[U|A,Z ] = βAUA + βZUZ

Implication on observables:

E[Y |A,Z ] = βAYA + βUYE[U|A,Z ]

E[W |A,Z ] = βUWE[U|A,Z ]

⇒ E[Y |A,Z ] = βAYA +
βUY
βUW

E[W |A,Z ]

Non-rigorously argue yourself why we do not need to know the value of
βUY

βUW
when E[W |A,Z ] does depend on Z .

So it is quite important that E[U|A,Z ] varies with Z
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100% of proximal causal learning except for X

In fact, we can further relax the setting

Z U W

A Y

E[Y |A,Z ,U] = βAYA + βUYU

E[W |A,Z ,U] = βUWU

But what if

Z U W

A Y

E[Y |A,Z ,U] = βAYA + βUYU

E[W |A,Z ,U] = βUWU

Can you still argue E[U|A,Z ] varies with Z?
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Nonparametric identification: confounding bridge &
completeness

1. Confounding bridge: there exists a function h(a,w) such that

E[Y |A,Z ] = E[h(A,W )|A,Z ]

2. Completeness:

E[v(U)|Z ,A] = 0 with probability 1⇒ v(U) = 0 with probability 1

NOTE: Try to draw connections between these two assumptions and
what we have done with linear model!
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Proximal identification: Step 1

(1) “confounding bridge equation E[Y |Z ,A] = E[h(A,W )|Z ,A]” +
“exclusion restriction: Y ⊥⊥ Z |U,A”:

E[E[Y |U,A]|Z ,A] = E[E[Y |U,Z ,A]|Z ,A] = E[Y |Z ,A]

⇒E[E[Y |U,A]|Z ,A] = E[h(A,W )|Z ,A]
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Proximal identification: Step 2

(1) “confounding bridge equation E[Y |Z ,A] = E[h(A,W )|Z ,A]” +
“exclusion restriction: Y ⊥⊥ Z |U,A”:

E[E[Y |U,A]|Z ,A] = E[h(A,W )|Z ,A]

(2) “completeness: E[v(U)|Z ,A] = 0⇒ v(U) = 0” + “W ⊥⊥ Z ,A|U”

E[E[Y |U,A]|Z ,A] = E[h(A,W )|Z ,A] = E[E[h(A,W )|U,Z ,A]|Z ,A]

⇒E[Y |U,A] = E[h(A,W )|U,Z ,A] =

∫
h(A,w) f (w |U,Z ,A)︸ ︷︷ ︸

≡f (w |U)

dw
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Proximal identification: Step 3
(1) “confounding bridge equation E[Y |Z ,A] = E[h(A,W )|Z ,A]” +
“exclusion restriction: Y ⊥⊥ Z |U,A”:

E[E[Y |U,A]|Z ,A] = E[h(A,W )|Z ,A]

(2) “completeness: E[v(U)|Z ,A] = 0⇒ v(U) = 0” + “W ⊥⊥ Z ,A|U”

E[Y |U,A] =

∫
h(A,w)f (w |U)dw

(3) E[Y (a)] = E[E[Y (a)|U]]

= E[E[Y |U,A = a]]

=

∫
u

E[Y |U = u,A = a]f (u)du

(2)
=

∫
u

∫
w

h(a,w)f (w |u)dwf (u)du

=

∫
u

∫
w

h(a,w)f (w , u)dwdu

=

∫
w

h(a,w)

{∫
u

f (w , u)du

}
dw

=

∫
w

h(a,w)f (w)dw
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Proximal identification: Complete

(1) “outcome bridge equation E[Y |Z ,A] = E[h(A,W )|Z ,A]” +
“exclusion restriction: Y ⊥⊥ Z |U,A”:

E[E[Y |U,A]|Z ,A] = E[h(A,W )|Z ,A]

(2) “completeness: E[v(U)|Z ,A] = 0⇒ v(U) = 0” + “W ⊥⊥ Z ,A|U”

E[Y |U,A] =

∫
h(A,w)f (w |U)dw

(3)

E[Y (1)] = E[E[Y |U,A = 1]] =

∫
w

h(1,w)f (w)dw
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Proximal identification: IPW form

(1) “treatment bridge equation 1
P(A=1|W ) = E[q(Z ,A)|A = 1,W ]” +

“exclusion restriction: W ⊥⊥ Z ,A|U”:

E
[

1

P(A = 1|U)
|A = 1,W

]
= E[q(Z ,A)|A = 1,W ]

(2) “completeness: E[v(U)|A,W ] = 0⇒ v(U) = 0” + “Z ⊥⊥ Y |U”

1

P(A = 1|U)
=

∫
q(z ,A)f (z |U,A = 1)dz

(3)

E[Y (1)] = E
[

AY

P(A = 1|U)

]
= E [Aq(Z ,A)Y ]

Naturally, two forms give us “doubly robust” proximal ATE identification

E[Y (1)] = E [Aq(Z ,A)(Y − h(A,W )) + h(1,W )]
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Some final words on proximal causal learning

• The origin of proximal causal learning is from the measurement error
literature, in particular the work Kuroki and Pearl, 2014

• If you want more intuitive explanation, see
REF: Shi, Miao, Tchetgen Tchetgen. A Selective Review of
Negative Control Methods in Epidemiology. Epidemiology 2021
REF: Tchetgen Tchetgen, Ying, Cui, Shi, Miao. An Introduction to
Proximal Causal Learning. Statistical Science 2024+

• It is possible to use techniques from causal graphical models to
design algorithms to select valid proxies from data
(Kummerfield-Lim-Shi, 2022)

https://academic.oup.com/biomet/article-abstract/101/2/423/194920
https://arxiv.org/pdf/2009.05641.pdf
https://arxiv.org/pdf/2009.05641.pdf
https://arxiv.org/pdf/2009.10982.pdf
https://arxiv.org/pdf/2009.10982.pdf
https://arxiv.org/abs/2210.00528
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Other related frameworks

• Most frameworks dealing with unmeasured confounding developed in
economics and statistics are related to IV or proximal causal learning
(in fact, you should have realized that proxies are just
generalizations of IVs)

• Examples: Difference-in-Difference, Synthetic Control, Regression
Discontinuity, Multiple Treatments, Bespoke IV, Data Combination
... (study on your own if interested)
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Synthetic control

• We will only cover one particular method called “synthetic control”
(SC), invented by econometrician Alberto Abadie and colleagues in
2003

• REF: the original paper published in the top 5 economics journal
AER (like top 4 in math), and another case study published in JASA
in 2010

• Athey & Imbens praised SC as “the most important innovation in
the policy evaluation literature in the last 15 years”

• SC is designed to answer causal questions when we have the
so-called “panel data” (longitudinal data in biostatistics)

https://business.baylor.edu/scott_cunningham/teaching/abadie-and-gardeazabal-2003.pdf
https://business.baylor.edu/scott_cunningham/teaching/abadie-and-gardeazabal-2003.pdf
https://www.nber.org/system/files/working_papers/t0335/t0335.pdf
https://www.nber.org/system/files/working_papers/t0335/t0335.pdf
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Motivation of SC

• Suppose that one would like to study the causal effect of German
reunification on GDP

• Data: 1960 – 2003 GDP information for Germany and 16 other
countries without such a reunification

• Y1,t , t = 1, · · · ,T : the GDPs for Germany

• Yi,t , i = 2, · · · ,N; t = 1, · · · ,T : the GDPs for 16 other countries
(untreated)

• T0: the year of reunification, so Y1,t is untreated when t ≤ T0, but
treated when t > T0
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The data

• Downloadable from https://doi.org/10.7910/DVN/24714

• including information on: country, year, gdp, and other time-varying
covariates

https://doi.org/10.7910/DVN/24714
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SC: linear model case

• Suppose the following linear SEM for Germany:

Y1,t =

{
τt + α>1 Ut + ε1,t t > T0

α>1 Ut + ε1,t t ≤ T0

where Ut is a stochastic process that changes with t

• Potential outcome & consistency assumption:

Y1,t =

{
Y1,t(0) = α>1 Ut + ε1,t t ≤ T0

Y1,t(1) = Y1,t(0) + τt t > T0

• ATE of the treated unit: E[Y1,t(1)− Y1,t(0)] = τt for t > T0

• From the single time series alone, τt , t > T0 is not identified
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Synthetic control by other countries
• Abadie then realized that we also have data from other untreated

countries – can we do something similar to matching to create a
hypothetical “Germany” that was never re-unified from the data

Yi,t = α>i Ut , i = 2, · · · ,N; t = 1, · · · ,T

• Under what assumptions, can we achieve this goal?

• Existence of SC: there exists a set of weights wi , i = 2, · · · ,N (sum
to one) such that

α1 =
N∑
i=2

wiαi (1)

• Under (1), we achieve identification: t > T0

τt = E[Y1,t(1)− Y1,t(0)] = E[Y1,t ]− α>1 E[Ut ]

= E[Y1,t ]−
N∑
i=2

wiα
>
i E[Ut ] = E[Y1,t ]−

N∑
i=2

wiE[Yi,t ]
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Finding the weights

• The only remaining piece is to find out the weights
w = (w1, · · · ,wN)>

• A key observation under (1): for t ≤ T0,

Y1,t =
N∑
i=2

wiYi,t +

(
ε1,t −

N∑
i=2

wiεi,t

)
︸ ︷︷ ︸

mean zero

• This observation leads to the following constrained least-square
estimator of the weights:

ŵ = arg min
0≤w≤1,1>w=1

1

T0

T0∑
t=1

(
Yi,t −

N∑
i=2

wiYi,t

)2
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Germany reunification example

• Use “Synth” package in R

• See “exercises.R”
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Final comments on synthetic controls

• The theoretical justification of the constrained least square methods
is tricky – the noise term is correlated with the “regressors” in the
model (because Yi,t is determined by εi,t)

• SC is also connected with matrix completion (the statistical problem
that arises from the Netflix challenge)

Y =


X X · · · X X X
X X · · · X X X
NA X · · · X X X

...
...

. . .
...

...
...

NA X · · · X X X


for more connections, see Athey et al. ’21 and Amjad, Shah, Shen
’19

https://arxiv.org/pdf/1710.10251
https://www.jmlr.org/papers/volume19/17-777/17-777.pdf
https://www.jmlr.org/papers/volume19/17-777/17-777.pdf
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partial identification, nontrivial inequality
constraints and a first encounter of quantum

mechanics in causal inference
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Partial identification instead of point identification

• So far we have largely focused on (point) identification theory
except for a brief intro to sensitivity analysis

• Partial identification: set-valued identification

• Scenario 1: core IV conditions hold but no extra modeling/proxy
assumptions

• Scenario 2: mismatched data fusion (e.g. one dataset has (X ,A)
but the other dataset has (A,Y ))

• Many others (e.g. very natural to consider invalid proxy)

• We will not cover the quantum mechanics part (read the materials if
interested)
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Trivial partial identification

• Consider binary treatment (A ∈ {0, 1}) and binary outcome
(Y ∈ {0, 1})

• τ = E[Y (1)]− E[Y (0)] = Pr(Y (1) = 1)− Pr(Y (0) = 1)
recall observed-counterfactual by consistency:
Y = AY (1) + (1− A)Y (0)

• Trivia:

τ = Pr(Y (1) = 1,A = 1) + Pr(Y (1) = 1,A = 0)− Pr(Y (0) = 1,A = 1) − Pr(Y (0) = 1,A = 0)

= Pr(Y = 1,A = 1)− Pr(Y = 1,A = 0) + Pr(Y (1) = 1,A = 0)︸ ︷︷ ︸
a

−Pr(Y (0) = 1,A = 1)︸ ︷︷ ︸
b

⇒ τ

{
≥ Pr(Y = 1,A = 1)− Pr(Y = 1,A = 0)− Pr(A = 1) a = 0, b ≤ Pr(A = 1)
≤ Pr(Y = 1,A = 1)− Pr(Y = 1,A = 0) + Pr(A = 0) a ≤ Pr(A = 0), b = 0

⇔ τ

{
≥ − Pr(Y = 0,A = 1)− Pr(Y = 1,A = 0)
≤ Pr(Y = 1,A = 1) + Pr(Y = 0,A = 0)

Conclusion:

− Pr(Y = 0,A = 1)− Pr(Y = 1,A = 0) ≤ τ ≤ Pr(Y = 1,A = 1) + Pr(Y = 0,A = 0)

Width of this trivial bound is 1, so almost always covers 0
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−Pr(Y (0) = 1,A = 1)︸ ︷︷ ︸
b

⇒ τ

{
≥ Pr(Y = 1,A = 1)− Pr(Y = 1,A = 0)− Pr(A = 1) a = 0, b ≤ Pr(A = 1)
≤ Pr(Y = 1,A = 1)− Pr(Y = 1,A = 0) + Pr(A = 0) a ≤ Pr(A = 0), b = 0

⇔ τ

{
≥ − Pr(Y = 0,A = 1)− Pr(Y = 1,A = 0)
≤ Pr(Y = 1,A = 1) + Pr(Y = 0,A = 0)

Conclusion:

− Pr(Y = 0,A = 1)− Pr(Y = 1,A = 0) ≤ τ ≤ Pr(Y = 1,A = 1) + Pr(Y = 0,A = 0)

Width of this trivial bound is 1, so almost always covers 0
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Can we do better than trivial bounds?

• Yes, using IV
Hernan, Robins. Instruments for Causal Inference: An
Epidemiologist’s Dream?

• Even under the relaxed IV SWIG, we have
latent-variable exclusion restriction & exogeneity

Pr(Y (z = 1, a) = 1|U) = Pr(Y (z = 0, a) = 1|U), a ∈ {0, 1};
Z ⊥⊥ U;Y (z , a) ⊥⊥ Z ,A(z)|U, a, z ∈ {0, 1}2
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Narrow it down using IV: Robins-Manski bounds
Marginalizing U, “relaxed” IV core becomes marginal IV assumptions

Y (z , a) ⊥⊥ Z ,P(Y (1, a) = 1) = P(Y (0, a) = 1), a, z ∈ {0, 1}2

Robins (1989) & Manski (1990) showed
1. When conditioning on the same z

τ = E[Y (1)]− E[Y (0)] = E[Y (1)|Z = z]− E[Y (1)|Z = z]⇒

τ ∈
[

maxz=0,1 {− Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z)} ,
minz=0,1 {Pr(Y = 1,A = 1|Z = z) + Pr(Y = 0,A = 0|Z = z)}

]

2. When conditioning on different z ’s: lower bound

τ = Pr(Y (1) = 1,A = 1|Z = z) + Pr(Y (1) = 1,A = 0|Z = z)

− Pr(Y (0) = 1,A = 1|Z = z′) − Pr(Y (0) = 1,A = 0|Z = z′)

= Pr(Y = 1,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(Y (1) = 1,A = 0|Z = z)− Pr(Y (0) = 1,A = 1|Z = z′)

= Pr(A = 1|Z = z)− Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(Y (1) = 1,A = 0|Z = z)− Pr(Y (0) = 1,A = 1|Z = z′)

= − Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(A = 1|Z = z) + Pr(Y (1) = 1,A = 0|Z = z)− Pr(Y (0) = 1,A = 1|Z = z′)

≥ − Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(A = 1|Z = z)− Pr(A = 1|Z = z′)
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Robins-Manski bounds

τ ∈



max



− Pr(Y = 0,A = 1|Z = 1)− Pr(Y = 1,A = 0|Z = 1),
− Pr(Y = 0,A = 1|Z = 0)− Pr(Y = 1,A = 0|Z = 0),
− Pr(Y = 0,A = 1|Z = 1)− Pr(Y = 1,A = 0|Z = 0)

+ Pr(A = 1|Z = 1)− Pr(A = 1|Z = 0),
− Pr(Y = 0,A = 1|Z = 0)− Pr(Y = 1,A = 0|Z = 1)

+ Pr(A = 1|Z = 0)− Pr(A = 1|Z = 1)


,

min



Pr(Y = 1,A = 1|Z = 1) + Pr(Y = 0,A = 0|Z = 1),
Pr(Y = 1,A = 1|Z = 0) + Pr(Y = 0,A = 0|Z = 0),
Pr(Y = 1,A = 1|Z = 1) + Pr(Y = 0,A = 0|Z = 0)

+ Pr(A = 0|Z = 1)− Pr(A = 0|Z = 0)︸ ︷︷ ︸
Pr(A=1|Z=0)−Pr(A=1|Z=1)

,

Pr(Y = 1,A = 1|Z = 0) + Pr(Y = 0,A = 0|Z = 1)
+ Pr(A = 0|Z = 0)− Pr(A = 0|Z = 1)︸ ︷︷ ︸

Pr(A=1|Z=1)−Pr(A=1|Z=0)





Width of the above bounds?

Width ≤ Pr(A = 0|Z = 1) + Pr(A = 1|Z = 0)︸ ︷︷ ︸
sum of the probabilities of observed non-compliance

if Pr(A = 0|Z = 1) + Pr(A = 1|Z = 0) ≤ min{1,Pr(A = 0|Z = 0) + Pr(A =
1|Z = 1)}
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Can we strengthen Robins-Manski bounds?

Assume the following instead

Y (z = 0, a = 0) = Y (z = 1, a = 0) = Y (0)

Y (z = 0, a = 1) = Y (z = 1, a = 1) = Y (1)

Z ⊥⊥ (Y (0),Y (1))

Compare with Robins-Manski’s assumption

Y (z , a) ⊥⊥ Z ,P(Y (1, a) = 1) = P(Y (0, a) = 1), a, z ∈ {0, 1}2

What are the differences? The new IV assumptions are cross-world and
hence much stronger than the old assumptions!

In fact, we have

cross-world IV assumptions⇒ latent-variable IV assumptions⇒ marginal IV assumptions
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Balke-Pearl bounds: tightening Robins-Manski bounds
with cross-world assumption

• Recall the derivation of Robins-Manski bounds:

τ = Pr(Y (1) = 1,A = 1|Z = z) + Pr(Y (1) = 1,A = 0|Z = z)

− Pr(Y (0) = 1,A = 1|Z = z′) − Pr(Y (0) = 1,A = 0|Z = z′)

= Pr(Y = 1,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(Y (1) = 1,A = 0|Z = z)− Pr(Y (0) = 1,A = 1|Z = z′)

= Pr(A = 1|Z = z)− Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(Y (1) = 1,A = 0|Z = z)− Pr(Y (0) = 1,A = 1|Z = z′)

= − Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(A = 1|Z = z) + Pr(Y (1) = 1,A = 0|Z = z)− Pr(Y (0) = 1,A = 1|Z = z′)

≥ − Pr(Y = 0,A = 1|Z = z)− Pr(Y = 1,A = 0|Z = z′)

+ Pr(A = 1|Z = z)− Pr(A = 1|Z = z′)

Seemingly quite hopeless to improve!
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Balke-Pearl bounds: tightening Robins-Manski bounds
with cross-world assumption

• But let’s do a coupling argument! Choose z , z ′, z ′′ = 0, 1, 0 or 1, 0, 1

τ = Pr(Y (1) = 1)− Pr(Y (0) = 1)

= Pr(Y (1) = 1,Y (0) = 1|Z = z) + Pr(Y (1) = 1,Y (0) = 0|Z = z)

− Pr(Y (0) = 1,Y (1) = 1|Z = z′)− Pr(Y (0) = 1,Y (1) = 0|Z = z′′)

= Pr(Y = 1,Y (0) = 1,A = 1|Z = z) + Pr(Y (1) = 1,Y = 1,A = 0|Z = z)

+ Pr(Y = 1,Y (0) = 0,A = 1|Z = z) + Pr(Y (1) = 1,Y = 0,A = 0|Z = z)

− Pr(Y (0) = 1,Y = 1,A = 1|Z = z′)− Pr(Y = 1,Y (1) = 1,A = 0|Z = z′)

− Pr(Y (0) = 1,Y = 0,A = 1|Z = z′′)− Pr(Y = 1,Y (1) = 0,A = 0|Z = z′′)

≥ Pr(Y = 1,A = 1|Z = z) + Pr(Y (1) = 1,A = 0|Z = z)︸ ︷︷ ︸
≥ 0

− Pr(Y = 1,A = 1|Z = z′)− Pr(Y = 1,A = 0|Z = z′)

− Pr(Y = 0,A = 1|Z = z′′)− Pr(Y = 1,A = 0|Z = z′′)

≥ Pr(Y = 1,A = 1|Z = z)− Pr(Y = 1|Z = z′)

− Pr(Y = 0,A = 1|Z = z′′)− Pr(Y = 1,A = 0|Z = z′′)
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Balke-Pearl bounds: tightening Robins-Manski bounds
with cross-world assumption

• But let’s do a coupling argument! Choose z , z ′, z ′′ = 0, 1, 0 or 1, 0, 1

τ ≥ Pr(Y = 1,A = 1|Z = z)− Pr(Y = 1|Z = z′)

− Pr(Y = 0,A = 1|Z = z′′)− Pr(Y = 1,A = 0|Z = z′′)

• By finessing the calculations for the blue and green terms, we also
get

τ ≥ Pr(Y = 0,A = 0|Z = z)− Pr(Y = 0|Z = z′)

− Pr(Y = 0,A = 1|Z = z′′)− Pr(Y = 1,A = 0|Z = z′′)

• Upper bounds similar technique; omitted
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What is driving the gap between Robins-Manski &
Balke-Pearl?

• Of course, cross-world assumptions

• But is there anything more fundamental in terms of how our
physical world is operating?

cross-world IV assumptions⇒ latent-variable IV assumptions⇒ marginal IV assumptions

• Let’s recall the original latent variable IV SWIG

Z z A(z) a Y (a)

UU ′

• Let’s compare it with the DAG describing Bell-CHSH experiment:

Alice’s

setting
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Bell-CHSH experiment
One fundamental problem that quantum physicists studied back in the
1960’s was if reality is local (Einstein), i.e. if all the probabilistic
phenomenon observed in experiments are due to a hidden variable U or if
God plays dice (Bohr)

Think about what statisticians usually do in practice: We always assume
data are random draws from some stochastic process, e.g. regression
model Y = βX +N (0, 1); but have you ever doubted why we cannot
just develop data analysis methods for deterministic models? Are we
statisticians fundamentally quantum? Not really

Bell-CHSH experiment can be described as follows: Two particles are
prepared. One particle A travels to Alice and the other Y travels to Bob,
who are light years apart. Alice and Bob measure the particle spin along
directions z ∈ {0, 1} and a ∈ {0, 1} and observe A(z) ∈ {0, 1} and
Y (a) ∈ {0, 1}

If “local realism” (i.e. existence of U) were true, then the correlation
between Alice’s outcome A(z) and Bob’s outcome Y (a) must satisfy
certain constraints, discovered by John Clauser, Michael Horne, Abner
Shimony, and Richard Holt

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880
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CHSH-like inequality

Theorem 1 (CHSH-like inequality)

Z ,A,Y are all {0, 1}-valued. Under latent-variable IV assumptions

Pr(Y (z = 1, a) = 1|U) = Pr(Y (z = 0, a) = 1|U), a ∈ {0, 1};
Z ⊥⊥ U;Y (z , a) ⊥⊥ Z ,A(z)|U, a, z ∈ {0, 1}2

we have

0 ≤ Pr(Y (z , a) = 1,A = 1|Z = z) + Pr(Y (z , 1− a) = 0,A = 0|Z = z)

+ Pr(Y (1− z , a) = 0,A = 0|Z = 1− z)

− Pr(Y (1− z , 1− a) = 0,A = 0|Z = 1− z) ≤ 1

Bell experiment showed CHSH inequality can be violated; hence Bohr
were right and Einstein were wrong – reality is non-local, God does play
dice, and our world is intrinsically stochastic
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What does CHSH-like inequality have to do with
Balke-Pearl bounds?

Theorem 2 (Theorem 5.1 of F. Richard Guo’s PhD thesis)

CHSH inequality closes the gap between Balke-Pearl and Robins-Manski
bounds.

Proof.
Computer assisted proof. Balke-Pearl bounds can be derived symbolically
using polytope optimization algorithms. In fact, one can set up and solve
the following mathematical program:

max
···

or min
···

Pr(Y (z = 0, a = 1) = 1)− Pr(Y (z = 0, a = 0) = 1)

s.t. trivial inequalities for prob., consistency, marginal IV, CHSH inequality

where · · · stands for parametrized variables, including
Pr(Y = y ,A = a|Z = z) and Pr(A = a,Y (0, 0) = y00,Y (0, 1) =
y01,Y (1, 0) = y10,Y (1, 1) = y11|Z = z). The solution to this program is
in fact Balke-Pearl bounds
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Summary

cross-world IV assumptions⇒ latent-variable IV assumptions⇒ marginal IV assumptions

cross-world IV assumptions⇒ latent-variable IV assumptions⇒marginal IV assumptions︸ ︷︷ ︸
⇒Robins-Manski

cross-world IV assumptions︸ ︷︷ ︸
⇒Balke-Pearl

⇒ latent-variable IV assumptions⇒ marginal IV assumptions︸ ︷︷ ︸
⇒Robins-Manski
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More references on partial identification using IVs

• REF: Balke, Pearl. Bounds on Treatment Effects from Studies with
Imperfect Compliance. JASA 1997.

• REF: Swanson et al. Partial Identification of the Average Treatment
Effect Using Instrumental Variables. JASA 2018.

• REF: Richardson, Robins. Analysis of the Binary Instrumental
Variable Model. 2014.
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Software

• R package causaloptim

• Learn how to use this package from
https://sachsmc.github.io/causaloptim/articles/example-code.html

• Symbolic computation and directly giving you the formula of the
bounds

• Including multiple IV bounds and outcome measurement error with
proxies

• For some contrived applications in legal contexts, see Tian and
Pearl, 2000 UAI

https://cran.r-project.org/web/packages/causaloptim/index.html
https://sachsmc.github.io/causaloptim/articles/example-code.html
https://arxiv.org/pdf/1301.3898.pdf
https://arxiv.org/pdf/1301.3898.pdf
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Next chapter

• Causal discovery and structure learning; some more causal graphs


