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Preface

Most causal inference researchers in statistics do not understand
graphical models to the level of doing creative research in this field but
obviously people started to realize the importance of better combining
causal graphs with statistical inference around about 2019

After this lecture, you could read the following people’s recent papers if
want to work on this field (without particular ordering):
Ilya Shpitser, Elias Barenboim, Thomas Richardson, Robin Evans, F.
Richard Guo, Emilija Perković, Marloes Maathius, Yangbo He, Jiji Zhang,
Jin Tian, Steffan Lauritzen, Samuel Wang, Caroline Uhler
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Why causal graphs?

• As we have seen, causal inference relies heavily on background
knowledge

• Causal graph is a very succinct way of representing background
knowledge

• We have seen some examples: backdoor, frontdoor

• But ...
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Motivating problems
• In certain applications, we do not have much background knowledge

to begin with. But it might be easy to collect data (e.g. in biology).
Can we learn background knowledge in the form of causal graph
from data?

• If the causal graph is very complicated (like below), how can you
identify any given causal query (in terms of counterfactuals)?

A X1 X2 Y

U1 U2

A X1

X2

X3

Y

U1

U2 U3

U4

Figure: Is p(Y (a)) identifiable in the above two graphs?

• Finally, in complex causal graphs, the same causal query might have
different identified formula. Which one should we use?
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Causal discovery or structure
learning: From data to causal graphs
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Markov equivalence class (MEC) of a causal DAG

• Suppose the underlying but unknown causal DAG G = (V ,E ) is

A Y

• Qn: if we only observe (Ai ,Yi )
n
i=1, can we recover the above graph?

Or equivalently, can we distinguish the following three structures?
(1) A→ Y ; (2) A← Y ; (3) A Y

• Assuming faithfulness: if A→ Y or A← Y , then A and Y are
dependent (i.e. not d-separated by Z implies not independent
conditional on Z )

• Without modeling assumptions, one cannot infer the direction so the
discovered graph is one of the following MECs (represented by
PDAGs) of DAGs between A and Y :

A Y A Y
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Countering MEC?

The conclusion that we cannot distinguish between A −→ Y and
A←− Y is a “nonparametric” statement, in the following sense:

For any distribution P Markov factorized according to A −→ Y , one can
always find a distribution Q Markov factorized according to A←− Y
such that P ∼ Q

But it does not rule out the possibility of distinguishing DAGs in one
MEC by imposing more modeling assumptions: e.g. linear non-Gaussian
models
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Distinguishable orientation based on Linear non-Gaussian
models

Let’s assume the following SEM:

A ∼ Unif([−1, 1]),Y ∼ A + Unif([−1, 1])

We could fit two linear regressions lm(Y ∼ A− 1) and lm(A ∼ Y − 1)
and look at their residual plots:
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Example 1

X A Y

Let’s say we have known all the yellow edges, but we want to distinguish
(1) A→ Y ; (2) A← Y ; (3) A Y

Guess what to do?

1) Testing conditional independence Y ⊥⊥ A|X :
if accept, then A Y ; else, then A→ Y or A← Y

X A Y X A Y

2) No other independence/conditional independence tests can further
orient the uncertainty
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Example 2

X A Y

Let’s say we have known all the yellow edges, but we want to distinguish
(1) A→ Y ; (2) A← Y ; (3) A Y

Guess what to do?

1) Testing independence Y ⊥⊥ A:
if accept, then A Y ; else, then A→ Y or A← Y

X A Y X A Y

2) Testing conditional independence Y ⊥⊥ X |A:
if accept, then A→ Y ; else A← Y
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Conditional independence testing

A classical problem in statistics, and DIFFICULT!

Active area of research in mathematical statistics; many different ideas

But impossibility results by Jonas Peters and Rajen Shah AoS 2020 and
Neykov, Balakrishnan, Wasserman AoS 2022 when the variable being
conditioned on is continuous

https://arxiv.org/pdf/1804.07203
https://arxiv.org/pdf/2001.03039.pdf
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High level definition of MEC

High level definition (what this definition is trying to accomplish?):

Markov equivalence class (MEC) of a causal DAG G0: a set of causal
DAGs [G] containing G0 such that one cannot distinguish among
members in [G] with only observational data
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Operational definition of MEC

Operational definition (precise mathematical translation of high level
definition):

Markov equivalence class (MEC) of a causal DAG G0: a set of causal
DAGs [G] containing G0 such that every member of [G] shares the same
independence and conditional independence constraints, or equivalently
the same

1) skeletons (turning all directed edges into undirected edges)

2) d-separation constraints
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Constructive definition of MEC

Constructive definition (need a proof that shows Operational ⇔
Constructive):

Markov equivalence class (MEC) of a causal DAG G0: a set of causal
DAGs [G] containing G0 such that every member of [G] shares the same

1) skeletons

2) v-structures (V1 → V3 ← V2)

This was proved in:
REF: Verma, Pearl. On the Equivalence of Causal Models. UAI 1990

WARNING: v-structure means V1 → V3 ← V2 and there shall be no
arrows between V1 and V2; v-structure is also called “unshielded collider”

https://arxiv.org/pdf/1304.1108
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Examples

MEC of the following graph G0 (note: no v-structure)

X A Y

How many in total? Which should be excluded? How many are left?

X A Y X A Y

X A Y X A Y

X A Y X A Y



15/ 107

Examples

MEC of the following graph G0 (note: no v-structure)

X A Y

How many in total? Which should be excluded? How many are left?

X A Y X A Y

X A Y X A Y

X A Y X A Y



16/ 107

Completed Partially DAG (CPDAG)

• MEC is a set of DAGs: when there are many, inconvenient to write
down

• A more succinct representation? CPDAG (or essential graphs)

• Construction rule: denote CPDAG of G as C:

1) If there is at least one X → Y and at least one X ← Y in [G],
then X − Y in C

2) If X → Y is in every DAG in [G], then X → Y in C
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Example

CPDAG of

X A Y

is

X A Y
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How to reduce uncertainty of a CPDAG?

• With purely observational data (no interventions), in the worst case,
the best one can do is to recover the CPDAG assuming no hidden
variables

• How can we reduce uncertainty of such a CPDAG?

1) Imposing more modeling assumptions: e.g. non-Gaussian errors
may orient the direction of an arrow with only pair of
observations
REF: Shimizu et al. A linear non-Gaussian acyclic model for
causal discovery. JMLR 2006.
REF: Wang, Drton. Causal discovery with unobserved
confounding and non-Gaussian data. 2021.

2) Background knowledge or doing intervention

https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://www.jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf
https://arxiv.org/pdf/2007.11131
https://arxiv.org/pdf/2007.11131
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From CPDAG to MPDAG

The power of background knowledge or simply doing intervention (action
in reinforcement learning):

Example:

X A Y

if we additionally have background knowledge X → A, then we have the
following Maximal PDAG (MPDAG), denoted as M

X A Y

how about we intervene X? can we have more precise MPDAG?
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Research frontier: fundamental open problems

With all the above definitions, we can ask the following fundamental
questions

1) Given purely observational data, what algorithm can recover the
CPDAG? (PC algorithm)

2) Given a DAG/CPDAG, what causal query can be identified? (see
Elias Bareinboim’s recent papers)

3) Given identifiable causal query, what is the optimal identification
formula? (Rotnitzky and Smucler, JMLR 2020)

4) 1), 2), 3) with interventional data (or background knowledge)
and/or allowing for latent factors

https://www.jmlr.org/papers/volume21/19-1026/19-1026.pdf
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Q1). Peter-Clark (PC) algorithm

• Invented by Peter Spirtes and Clark Glymour

• Ground rule 1: X Y (no edge) if and only if there exists
SX ,Y ⊆ V \ {X ,Y } such that

X ⊥⊥ Y |SX ,Y

• Ground rule 2: if X Y but X → Z ← Y (v-structure), then

Z 6∈ SX ,Y
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PC algorithm: vanilla version

Initialize a complete undirected graph

1) For every pair (X ,Y ), if there exists SX ,Y ⊆ V \ {X ,Y } such that

X ⊥⊥ Y |SX ,Y ,

remove the edge in X − Y

2) If there exists X − Z − Y but X Y , and Z 6∈ SX ,Y , then orient
X − Z − Y to X → Z ← Y

3) Apply the following sub-rules:

i) X Z and X → Y − Z ⇒ X → Y → Z [due to 2) and logic]

ii) X → Y → Z and X − Z ⇒ X → Z [acyclicity]
iii) X Z , X −W − Z , X → Y ← Z and W − Y ⇒ W → Y

[why?]
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ii) X → Y → Z and X − Z ⇒ X → Z [acyclicity]

iii) X Z , X −W − Z , X → Y ← Z and W − Y ⇒ W → Y
[why?]
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PC algorithm: vanilla version

Initialize a complete undirected graph

1) For every pair (X ,Y ), if there exists SX ,Y ⊆ V \ {X ,Y } such that

X ⊥⊥ Y |SX ,Y ,
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2) If there exists X − Z − Y but X Y , and Z 6∈ SX ,Y , then orient
X − Z − Y to X → Z ← Y

3) Apply the following sub-rules:

i) X Z and X → Y − Z ⇒ X → Y → Z [due to 2) and logic]
ii) X → Y → Z and X − Z ⇒ X → Z [acyclicity]
iii) X Z , X −W − Z , X → Y ← Z and W − Y ⇒ W → Y

[why?]
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Why not Y →W ? If it were the case, then also need to orient X →W
and Z →W by sub-rule 3):ii) so we have X →W ← Z and X Z

But we should have had oriented such v-structure in step 2)
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PC algorithm: improve computational efficiency

• Intractable: for each pair (X ,Y ), if there are p vertices in the graph,
then to find SX ,Y one needs to enumerate over 2p−2 possible sets of
vertices

• See the following paper on how to improve computational efficiency
REF: Computation, causation and discovery
Main idea: searching for SX ,Y , starting from empty set, increasing
the cardinality one by one
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Example

A

B
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D E

Unknown true graph
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D E

Initial complete undirected graph
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Check marginal independencies

No pairs are independent marginally. Nothing changed

A

B
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D E

Unknown true graph
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B
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D E

Initial complete undirected graph
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Check conditional independencies

B ⊥⊥ C |A

A

B

C

D E

Unknown true graph

A

B

C

D E



28/ 107

Check conditional independencies

A ⊥⊥ E |D
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Check conditional independencies

B ⊥⊥ E |D, C ⊥⊥ E |D

A

B

C

D E

Unknown true graph

A

B

C

D E
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Check conditional independencies

A ⊥⊥ D|{B,C}

A

B

C

D E

Unknown true graph

A

B

C

D E

Skeleton of the unknown true graph
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Orientation of edges in the skeleton

Rule 2) (about v-structure)

A

B

C

D E

Unknown true graph

A

B

C

D E

Orientation of the v-structure

Rule 3):i)

A

B

C

D E

Unknown true graph

A

B

C

D E

Do we need to consider Rule 3):iii)?
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Theoretical guarantee

Spirtes and Glymour showed consistency of PC algorithm:

Theorem 1

Under the faithfulness assumption, with input data Vi , i = 1, · · · , n, the
output of the PC algorithm Ĉ converges to the true CPDAG C of the
underlying unknown DAG G, as n→∞.
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Other algorithms

• As always, there are almost no problems that can only be solved by
one algorithm

• Greedy Equivalence Search (Chickering 2002; Chickering & Meek
2002)

• BIC-score based search (Madigan & Raftery, 1994)

• Maathuis et al. Nature Methods 2009: IDA algorithm (but assuming
linear models so bummer)
By far, the most influential work in causal discovery in applications
(genomics).
But in genomics, whether it provides significant gain compared to
existing correlation/partial correlation based method still remains to
be seen.
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More recent works

• First continuous optimization framework for linear model DAG
learning, see Zheng et al. NeurIPS 2018 (DAGs with NoTear

• Graph neural networks with DAG learning, see Yu et al. ICML 2019

• Continuous optimization framework for single-index model DAG
learning, see Yu et al. ICML 2021 (DAGs with no curl)

https://arxiv.org/pdf/1803.01422
https://arxiv.org/pdf/1904.10098.pdf
https://arxiv.org/abs/2106.07197
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Further orienting the uncertain edges

• Easy if we have further background knowledge: CPDAG ⇒ MPDAG

• Nontrivial if we have interventional (I) data: MEC ⇒ I-MEC

• Once we consider interventional data, many new directions/problems
suddenly appear!

1) Hard or soft intervention?
2) Are the intervened vertices known or unknown to us?
3) Is the intervention error-prone? (e.g. CRISPR-based gene

knockdown techniques are known to have off-target effects)
4) Are latent variables allowed?

• Hauser and Bühlmann JMLR 2012 proved: Without hidden
variables, given an intervention target sets I, with correct and hard
intervention, two DAGs G1 and G2 belong to the same I-MEC if and
only if for every I ∈ I, G1(I ) ∼ G2(I ) in observational sense

https://www.jmlr.org/papers/volume13/hauser12a/hauser12a.pdf
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R Exercise

• Implementing pcalg
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Q2). ID algorithm

• For DAG without hidden variables, identification is easy by Robins’
g-formula

p(Y (a) = y) =

∫ ∏
i∈anGV\A (Y )

pi (vi |paG(vi ))
∏

i∈anGV\A (Y )\Y

dvi

• For CPDAG/MPDAG, Perković 2020 UAI gave the identification
formula

Theorem 2 (Theorem 3.6 of Perković 2020 UAI)

If there is no path 〈A,V1, · · · ,Vk , · · · ,Y 〉 from A to Y without edge
Vj → Vi for any j > i in G starting with A− · · · , then

p(Y (a) = y) =

∫ k∏
j=1

p(bj |paG(bj))db̄

where buckets Bj ’s are buckets of anGV\A(Y ) and B̄ = anGV\A(Y ) \ Y

http://proceedings.mlr.press/v124/perkovic20a/perkovic20a.pdf
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• For DAG without hidden variables, identification is easy by Robins’

g-formula

p(Y (a) = y) =

∫ ∏
i∈anGV\A (Y )

pi (vi |paG(vi ))
∏

i∈anGV\A (Y )\Y

dvi

• For CPDAG/MPDAG, Perković 2020 UAI gave the identification
formula

• The intuition is clear: since CPDAG/MPDAG involves undirected
edges, decompose the vertices V = ∪kj=1Bj into smaller units, which
is called “bucket” by Perković: in graph-theoretic terms, bucket is
the maximally connected component by undirected edges

For DAGs, buckets are all the singletons of vertices
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Q2). ID algorithm

Paths like 〈A,V1, · · · ,Vk , · · · ,Y 〉 without edge Vj → Vi for any j > i in
G are called “possibly causal paths”. Why excluding “possibly causal
paths” that start with A− · · · ?

A −− Y

This is a possibly causal path from A to Y , with the first edge being
undirected. Why we cannot identify the causal effect of A on Y ?
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Q2). ID algorithm: Example

Y1 A Y2

C

CPDAG/MPDAG

Y1 A Y2

C

Y1 A Y2

C

Y1 A Y2

C

MEC of DAGs

p((Y1,Y2)(a)) identifiable?
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Q2). ID algorithm: Example

Y1 A Y2

C

CPDAG/MPDAG

Y1 A Y2

C

Y1 A Y2

C

Y1 A Y2

C

MEC of DAGs

p((Y1,Y2)(a)) identifiable?

Yes! A− C − Y1, A← Y1 → Y2, A− C − Y1 → Y2 not “possibly
causal paths” due to Y1 → A; A→ Y2 “possibly causal path” yet
not starting with A− · · ·
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Q2). ID algorithm: Example

Y1 A Y2

C

CPDAG/MPDAG

Y1 A Y2

C

Y1 A Y2

C

Y1 A Y2

C

MEC of DAGs

p((Y1,Y2)(a)) identifiable?

Identification formula: Buckets in anGV\A(Y1,Y2) ≡ {Y1,Y2} are
{Y1} and {Y2} so

p((Y1,Y2)(a) = (y1, y2)) = p(y2|a, y1)p(y1)
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Q2). ID algorithm: Example

Y1 A Y2

C

CPDAG/MPDAG

Y1 A Y2

C

Y1 A Y2

C

Y1 A Y2

C

MEC of DAGs

p((Y1,Y2)(a)) identifiable?

Try g-formula with all the DAGs/SWIGs in the MEC
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Q2). ID algorithm: Example

Y1 A Y2

C

CPDAG/MPDAG

Y1 A Y2

C

Y1 A Y2
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Q2). ID algorithm: Example

Y1 A Y2

C

CPDAG/MPDAG

Y1 A Y2

C

Y1 A Y2

C

Y1 A Y2

C

MEC of DAGs

p((C ,Y1,Y2)(a)) identifiable?
No! A− C “possibly causal path” that starts with A− · · ·
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Q3) Efficient adjustment set (research frontier)

• After ID algorithm outputs yes, a causal query is identifiable but
could be over-identified, e.g.

A Y

X1 X2X0

If we want to query E[Y (1)], there are at least four g-formula:

θ0 = EX0 [EY [Y |X0,A = 1]]

θ01 = EX0,X1 [EY [Y |X0,X1,A = 1]]

θ02 = EX0,X2 [EY [Y |X0,X2,A = 1]]

θ012 = EX0,X2 [EY [Y |X0,X1,X2,A = 1]]

So {X0}, {X0,X1}, {X0,X2} and {X0,X1,X2} are all valid
adjustment sets

• Which one would you pick to use?
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Q3) Efficient adjustment set

• Henckel et al. 2019 first formalized the above problem for average
causal effects E[Y (a)] under linear causal models

• Rotnitzky and Smucler 2020 demonstrated Henckel et al.’s algorithm
also applies to nonlinear models but using very different proof
techniques

• Their results have been folklore (with proof) to causal inference
researchers for a long time

A Y

X1 X2X0

In the above example, sufficient to only adjust for X0; further
adjusting for X2 can reduce variance but further adjusting for X1 can
inflate variance

https://arxiv.org/pdf/1907.02435.pdf
https://www.jmlr.org/papers/volume21/19-1026/19-1026.pdf
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Efficient adjustment set

A Y

X1 X2X0

In the above example, sufficient to only adjust for X0; further adjusting
for X2 can reduce variance but further adjusting for X1 can inflate
variance

X0 is obviously a confounder; for the above reason, X2 is called “precision
variable”

For future reference, {X0} is called minimal adjustment set because no
proper subset of {X0} is still a valid adjustment set
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Illustration via linear models

Data generated via linear model

E[Y |A,X ] = βAYA + βX0YX0 + βX2YX2

E[A|X ] = βX0AX0 + βX1AX1

Then the coefficient βAY of A is the causal effect of A on Y

From basic linear regression Y ∼ A + X0 + X1 + X2, least square
estimator τ̂AY satisfies

√
n (τ̂AY − βAY )→ N

(
0,

var(Y − βAYA− (X0 X1 X2)τXY )

var (A− (X0 X1 X2)τXA)

)
To minimize var

[√
n
(
β̂AY − βAY

)]
:

1. minimize the numerator: only keep X0,X2 because X2 reduces
prediction error

2. maximize the denominator: get rid of X1 to inflate prediction error
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:

1. minimize the numerator: only keep X0,X2 because X2 reduces
prediction error

2. maximize the denominator: get rid of X1 to inflate prediction error
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Illustration via linear models
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Improving efficiency (reducing variance) from any valid
adjustment set

Lemma 1 (Rotnitzky and Smucler, JMLR 2020)

Denote θE as the g formula adjusting for the set E . Let B be any valid
adjustment set. If there exists a set C s.t. A ⊥⊥ C |B, then B ∪C is also a
valid adjustment set, and θB∪C improves over θB in the following sense:

• the variance σ2
B∪C of any “optimal estimator” of θB∪C is no greater

than that σ2
B of θB

σ2
B∪C ≤ σ2

B

A Y

X1 X2X0

In the above example, {X0} is a valid adjustment set, and A ⊥⊥ X2|X0, so
adjusting for {X0,X2} is better
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Comments

• “Optimal estimator” is in fact “semiparametric efficient estimator”,
which will not be covered in this course due to time constraint

• How to prove? I will use the same example as an illustration: for any
valid adjustment set B

σ2
B = E

[{
A

Pr(A = 1|B)
(Y − E[Y |A = 1,B]) + E[Y |A = 1,B]− θB

}2
]

= E
[

A

Pr(A = 1|B)2
(Y − E[Y |A = 1,B])2

]
+ EB

[
{E[Y |A = 1,B]− θB}2

]
= E

[
1

Pr(A = 1|B)
E
[
(Y − E[Y |A = 1,B])2|A = 1,B

]]
+ EB

[
{E[Y |A = 1,B]− θB}2

]
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Comments (continue)

σ2
B

= E
[{

1

Pr(A = 1|B)
− 1

}
E
[
(Y − E[Y |A = 1,B])2|A = 1,B

]]
+ EB

[
E
[
(Y − E[Y |A = 1,B])2|A = 1,B

]]
+ EB

[
{E[Y |A = 1,B]− θB}2

]
= E

[{
1

Pr(A = 1|B)
− 1

}
var [Y |A = 1,B]

]
+ EB [E[(Y − θB)2|A = 1,B]]

Similarly

σ2
B∪C = E

[{
1

Pr(A = 1|B,C )
− 1

}
var [Y |A = 1,B,C ]

]
+ EB,C [E[(Y − θB∪C )2|A = 1,B,C ]]

(why?) = E
[{

1

Pr(A = 1|B)
− 1

}
E [var [Y |A = 1,B,C ] |A = 1,B]

]
+ EB [E[(Y − θB)2|A = 1,B]]
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Comments (continue)

Take the difference:

σ2
B − σ2

B∪C

= E
[{

1

Pr(A = 1|B)
− 1

}
{var [Y |A = 1,B]− E [var [Y |A = 1,B,C ] |A = 1,B]}

]
= E

[{
1

Pr(A = 1|B)
− 1

}
var {E [Y |A = 1,B,C ] |A = 1,B}

]
≥ 0

Q.E.D.
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Improving efficiency (reducing variance) from any valid
adjustment set

Lemma 2 (Rotnitzky and Smucler, JMLR 2020)

Denote θE as the g formula adjusting for the set E . Let B ∪ C be any
valid adjustment set. If Y ⊥⊥ C |B,A, then B is also a valid adjustment
set, and θB improves over θB∪C in the following sense:

• the variance σ2
B of any “optimal estimator” of θB is no greater than

that σ2
B∪C of θB∪C

σ2
B ≤ σ2

B∪C

So combining Lemma 1 and Lemma 2, one can get the benefits of both
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Finale of efficient adjustment set

Theorem 3 (Henckel et al. 2019, Rotnitzky and Smucler
JMLR 2020)

Define

O =

{
non-descendants of A that are also parents of Y

or parents of vertices on the causal path between A and Y

}
Then O is a globally optimal valid adjustment set.

This theorem formalized statisticians’ long-standing intuition in the most
general way under causal sufficiency
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Example

An example stolen from Andrea Rotnitzky’s ocis talk
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Open problem

• Optimal g-formula for general case in DAG (longitudinal and
dynamic regime have been shown to be impossible by Rotnitzky and
Smucler, change definition?)

• Optimal adjustment formula for CPDAG/MPDAG in nonlinear case
(linear case done in Guo and Perković, JMLR 2022)

• Optimal g-formula for CPDAG/MPDAG

https://www.jmlr.org/papers/volume23/21-023/21-023.pdf
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Causal graph allowing latent variables

• So far we have considered the whole pipeline: observational data +
experiments/background knowledge → MPDAG → identification

• What is left is to allow for latent variables, which is a much more
challenging problem

• Directly adding all latent variables into DAG is inconvenient for
obvious reasons

• We need new graphical models –
Acyclic Directed Mixed Graphs (ADMGs) and mDAGs

• We will see several examples of ADMGs and mDAGs, but our focus
will be on ADMGs

https://arxiv.org/pdf/1701.06686
https://arxiv.org/pdf/1408.1809
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Examples of ADMGs

X1 X2 X3

U

DAG with latent variable

X1 X2 X3

Corresponding ADMG

Introducing bidirected edges, but losing information that all three
observables share the same latent variable(s) U
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Examples of mDAGs

X1 X2 X3

U

DAG with latent variable

X1 X2 X3

Corresponding mDAG

Introducing hyperedges (the red trident structure in the right graph),
increasing the representation complexity (may eventually need a

hyperedge with many many endpoints), but keeping more information of
the original DAG
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Latent projection: Map DAG with latent to ADMG

• Before talking about ADMG, we first define a graphical operation
called latent projection

• A DAG G with vertices O ∪ L where L are latent

• Denote latent projection of G as G[O], constructed as follows

• Keep vertices in O and edges between every pair of vertices in O
• If X ,Y ∈ O, ◦ ∈ L, and there is a causal path

X → ◦→· · ·→◦ → Y , then add X → Y if it is not already
there

• If there exists a path between X and Y such that the
non-endpoints are non-colliders in L, and such that the edge
adjacent to the end points are both pointing to the end points,
then add X ↔ Y
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ADMG

• Definition: A graph G† is an ADMG if G† = G[V ] for some DAG G

• Equivalent definition: A graph G† is an ADMG if

(i) the edges are either → or ↔
(ii) there are no directed cycles

• Exercise: try to prove the above two definitions are equivalent

• Example: Verma

A B C D

L

DAG G

A B C D

ADMG G[{A,B,C ,D}]
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Example
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MEC of ADMGs?

• Obviously, to even consider causal discovery, one needs concepts like
MEC of DAGs

• Unfortunately, MEC of ADMGs has been an open problem for 30
years [Shpitser et al. Introduction to nested Markov models
conjectured MEC for ADMGs with four vertices via
computer-assisted proof]

• Robin Evans (Oxford statistics) is getting ε-close to prove MEC of
ADMGs (personal communication)

• Richardson and Spirtes 2002 have long figured out MEC of a
super-model of ADMGs, maximal ancestral graphs (MAGs)

• Spirtes et al. [“Computation, causation, and discovery” Chapter 6]
developed FCI (fast causal inference) algorithm which is sound and
complete (after modified by Jiji Zhang) for recovering MAGs

https://projecteuclid.org/download/pdf_1/euclid.aos/1031689015
https://www.sciencedirect.com/science/article/pii/S0004370208001008/pdf?md5=03171b4be4f0081617691c24f18ea85f&pid=1-s2.0-S0004370208001008-main.pdf
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Computer-assisted conjecture of Shpitser for four-vertex
ADMG
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MAG definition
• Ancestral graphs (AGs) do not allow for almost directed cycles: the

graph below is not an AG because B → C → D and B ↔ D form an
almost directed cycle

A B C D

ADMG G[{A,B,C ,D}] but not a MAG

• Maximal AGs do not allow for inducing paths1 between any two
non-adjacent vertices

A B

C D

Ancestral but not maximal because
{C − A− B − D} is an inducing path

A B

C D

MAG

1Every non-endpoint on the path is a collider and every collider is an ancestor of an
endpoint of the path
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Intuition on almost directed cycles and inducing paths

• Why not almost directed cycles?

To preserve ancestral relationships among the observables

• Why not inducing paths between non-adjacent vertices?
On a DAG, every two non-adjacent vertices have to be d-separated by
some other vertices; MAG needs to preserve such a property because no
observed data can distinguish whether or not the edge between C and D
exists
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From DAG to MAG

Two step procedure: input a DAG G output its MAG M
(1) Two observables A and B in G are adjacent in M if and only if

there is an inducing path between A and B relative to the hidden
vertices (i.e. hidden vertices on the path can be non-colliders)

A B C D

L

DAG with hidden L

A B C D

MAG from G

• every direct edge between two observables is an inducing path relative
to L
• A→ B ← L→ D inducing path rel. to L: B is a collider and
B ∈ an(D)
• B → L← D inducing path rel. to L
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From DAG to MAG

Two step procedure: input a DAG G output its MAG M
(1) Two observables A and B in G are adjacent in M if and only if

there is an inducing path between A and B relative to the hidden
vertices (i.e. hidden vertices on the path can be non-colliders)

(2) Orient A→ B if A = an(B), A← B if B = an(A), and A↔ B if
otherwise

A B C D

ADMG G[{A,B,C ,D}] but not a MAG

A B C D

MAG from G



65/ 107

MAGs and m-separation

• All the d-separation criterion for DAGs can be carried over to MAGs
and

• they are called m-separation
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MEC of MAGs

• High level: the set of MAGs that observational data cannot tell
apart from the true MAG based on independence and conditional
independence constraints

• Operational: MAGs that share the same m-separations

• Constructive: Spirtes, Richardson. AAAI 1996 and Zhang, 2012
proved two MAGs are Markov equivalent if and only if (1) they share
the same skeleton, (2) they share the same v-structures, and (3)
they share the same “discriminating path” for the same vertex that
is a (non)-collider on both MAGs

• MEC of MAGs can be represented by PAGs (partial ancestral
graphs), analogous to CPDAGs

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.42.8921&rep=rep1&type=pdf
https://arxiv.org/pdf/1206.5282.pdf
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proved two MAGs are Markov equivalent if and only if (1) they share
the same skeleton, (2) they share the same v-structures, and (3)
they share the same “discriminating path” for the same vertex that
is a (non)-collider on both MAGs

• MEC of MAGs can be represented by PAGs (partial ancestral
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Supplement: Discriminating path

In a MAG, a path p between A and B, e.g. p = (A, · · · ,W ,V ,B) is a
discriminating path for V if

1. p includes at least three edges (and of course, at least four vertices)

2. V is adjacent to one endpoint on p and in the above case, B

3. A and B non-adjacent, and every vertex between A and V is a
collider on p and is a parent of B

The reason we have to consider discriminating path for MAG is that
when p is a discriminating path, it behaves as a v-structure between A
and B in terms of the triple (W ,V ,B) in the following sense:

1. (W ,V ,B) is a non-collider if and only if every set m-separating A
and B contains V

2. (W ,V ,B) is a collider with W → B or W ← B if and only if every
set m-separating A and B does not contain V
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Q1) Causal discovery with latent variables: FCI algorithm

• For more recent development, check out Bhattacharya, Nagarajan,
Malinsky, Shpitser AISTATS 2021.

• Will not describe FCI in detail but note the following

• Spirtes et al. also proved as sample size n→∞, the output of FCI
converges to the MEC of the true underlying MAG, under
faithfulness

http://proceedings.mlr.press/v130/bhattacharya21a/bhattacharya21a.pdf
http://proceedings.mlr.press/v130/bhattacharya21a/bhattacharya21a.pdf
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What do we lose by only considering MAGs instead of
ADMGs

• At a high level, MAG preserves and only preserves (1) all
(conditional) independence constraints and (2) ancestral
relationships on observables implied by the original DAG

• But in reality, DAGs with hidden variables imply other constraints on
the observables other than (conditional) independences

A B C D

reweight by f̃ (c)
f (c|b)⇒ A B C D

Dormant independence: A ⊥⊥ D

• MAGs fail to preserve such dormant independences, or nested
Markov properties
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Controversies over causal discovery

• As promising as all the causal discovery algorithms may sound, there
are two fundamental issues

i. As many computer science problems, almost all papers on
causal discovery assume the oracle query model, hence assuming
away all statistical errors. But conditional independence is
impossible to test without restrictive modeling assumptions

ii. Faithfulness assumption is problematic IF we only have finite
sample

• As a result of highly fruitful debate between statisticians (James
Robins and Larry Wasserman) and CMU causal philosophers (Spirtes
et al.), science of causal discovery progresses in light speed in late
1990’s and early 2000’s (see Chapters 8-11 of “Computation,
causation and discovery”)

• It culminated at the paper by Caroline Uhler et al. in 2014, who
ingeniously applies classical results from algebraic geometry to this
problem

https://www.carolineuhler.com/
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What is faithfulness assumption

• We talked about faithfulness assumption but have not really
discussed it enough

• Recall definition of faithfulness:

A Y

U

Faithfulness: A ⊥⊥ Y ⇒ A and Y are d-separated

⇔ A and Y are not d-separated⇒ A 6⊥⊥ Y

• Intuitively speaking, in the above DAG, faithfulness rules out the
possibility that A← U → Y effect somehow cancel out the effect
A→ Y when looking at the marginal dependence between A and Y !
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Is it reasonable to assume faithfulness?

The answer is quite mixed.

On one hand, for probability distributions parameterized by
finite-dimensional parameters, the set of distributions Markov to a DAG
but unfaithful to that DAG has Lebesgue measure 0 (Meek. UAI 1995)!

On the other hand... let’s see towards the end of this section

https://arxiv.org/pdf/1302.4973
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Is consistency enough?

We will consider the following example: observe (A,Y ) and U could be
unmeasured but we assume the background knowledge U precedes A and
Y and A precedes Y . So we have the following 8 potential DAGs:

Subset 1: A 6⊥⊥ Y , FCI reports “don’t know”

A Y

U

A Y

U

A Y

U

A Y

U

A Y

U

Subset 2: A ⊥⊥ Y , FCI reports “A does not cause Y ”

A Y

U

A Y

U

A Y

U
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If U is observed but U is continuous

• When U is observed, one can do one independence test between A
and Y and one conditional independence test between A and Y
given U

• If U is continuous, then there may exist consistent tests but no
uniformly consistent test of H0 : Y ⊥⊥ A|U (proved in Shah, Peters.
Annals of Statistics 2020.)

• ε-δ translation of consistency:
For the true but unknown distribution P, given an error tolerance
ε > 0, we can find a large integer N(ε,P) ≡ N > 0, such that for
every n > N, the sum of type-I and type-II errors of testing H0 is
below ε

• ε-δ translation of uniform consistency:
For every distribution, given an error tolerance ε > 0, we can find a
large integer N(ε) ≡ N > 0, such that for every n > N, the sum of
type-I and (non-local) type-II errors of testing H0 is below ε

https://arxiv.org/pdf/1804.07203.pdf
https://arxiv.org/pdf/1804.07203.pdf
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Why uniform consistency is what we need?

Consistency tells us, for the given datasets, there exists a threshold N,
that depends on the unknown distribution of the given datasets and error
tolerance ε, such that whenever the actual sample size n > N, we can
guarantee the statistical error is below ε

Consistency cannot guide us in terms of study design because the
required minimum sample size depends on the unknown distribution,
which is the target of our statistical analysis

Uniform consistency, however, can tell us for all possible distributions
that we are considering, there exists a universal N such that n > N, the
worst-case statistical error is guaranteed to be below ε

Therefore, a meaningful statistical theory should be uniform rather than
point-wise (one can also connects such disparity to Hodges’ estimator in
classical statistical theory)
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If U is observed and U is categorical

• When U is observed, one can do one independence test between A
and Y and one conditional independence test between A and Y
given U

• If U is categorical, then testing H0 : Y ⊥⊥ A|U is equivalent to
testing finitely many marginal independences, for which there may
exist uniformly consistent tests (e.g. dcorr, BETs, ...)

• Since categorical U seems easy, let’s assume that throughout

• If the level of U is large compared to sample size (e.g.
high-dimensional multinomial), then it again becomes hard
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If U is latent but no faithfulness for U is assumed

Subset 1: A 6⊥⊥ Y , FCI reports “don’t know”

A Y

U

A Y

U

A Y

U

A Y

U

A Y

U

Subset 2: A ⊥⊥ Y , FCI reports “A does not cause Y ”

A Y

U

A Y

U

A Y

U

Without faithfulness, even no consistent method because A ⊥⊥ Y can be
compatible with the last DAG in Subset 1, so
H0 : no causal effect from A to Y will be erroneously accepted
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If U is latent and faithfulness is assumed

With faithfulness, we rule out the last DAG in Subset 1, so
H0 : no causal effect from A to Y can be safely rejected or accepted...

except that we can’t!

Robins et al.’s counterexample does require some deep statistical
thinking, but intuitively speaking they simply constructed the following:

A Y

U

A distribution Pn

1) Markov to the above DAG with a very strong A→ Y effect

2) The existence of U induces a non-zero marginal dependence between
A and Y

3) Yet such dependence depends on n and converges to 0 at rate n−1/2

https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/uniform.pdf
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Robins et al.’s counterexample

A Y

U

A distribution Pn

1) Markov to the above DAG with a very strong A→ Y effect

2) The existence of U induces a non-zero marginal dependence between
A and Y

3) Yet such dependence depends on n and converges to 0 at rate
O(n−1/2)

Then a valid independence test between A and Y will fail to reject
H0 : A ⊥⊥ Y even as n→∞

Because a valid independence test must not reject H0 with high
probability when H0 is indeed correct and O(n−1/2) is the finite sampling
error of such a test
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Zhang and Spirtes’s resolution

• Since Robins et al. (including Spirtes himself) emphatically
dis-proved the statistical content of FCI algorithm when latent
variable are allowed

• Peter Spirtes and his then PhD student Jiji Zhang (now Lingnan
University in HK) proposed the following resolution:

Let’s assume a stronger faithfulness (Zhang, Spirtes. UAI 2003)!

• λ-strong faithfulness: also remove distributions for which the
marginal dependence between A and Y is O{λ}

A Y

U

• Under (n/ log n)1/2-strong faithfulness, one can get uniform
consistency

https://arxiv.org/abs/1212.2506
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Caroline Uhler’s counter-argument

• Zhang and Spirtes also showed that by toying with the constants,
the Lebesgue measure of distributions violating λ-strong faithfulness
can be made arbitrarily small

• In 2012, Caroline Uhler proved that Zhang and Spirtes are overly
optimistic using tools from Real Algebraic Geometry (an important
subject matter for theoretical optimization and theoretical computer
science)

• Out of many interesting results, she showed that for DAGs as simple
as a tree with p vertices, the Lebesgue measure of distributions
violating λ-strong faithfulness is

≥ 1− (1− λ)p−1

• When p is moderately large, this lower bound gets close to 1

https://arxiv.org/pdf/1207.0547.pdf
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Summary of causal discovery controversy

• If some random variables are continuous, whether or not (1)
assuming faithfulness and (2) allowing for latent factors, no
uniformly consistent causal discovery method exists

• If all random variables are discrete, if no latent factors, without
faithfulness, there exist uniformly consistent methods

• If all random variables are discrete, with latent factors, without
faithfulness, no consistent method exists

• If all random variables are discrete, with latent factors, with
faithfulness, no uniformly consistent method exists

• But the above does not rule out the possibility of high-quality causal
discovery given (1) sufficient background knowledge, (2) correct
modeling assumption, and (3) possibility of high-quality
randomization or perturbation
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Final words about causal discovery

• Despite all these negative results, most of the research in causal
inference is about causal discovery because there are demands from
applications

• These problems are easier to be mathematized and sound fancier
than classical causal inference in statistics and econometrics:
reinforcement learning/high-dimensional linear models/neural causal
models/...

• But do take it with caution – I rarely hear good feedback from
applied researchers about IDA/PC/FCI algorithms etc. on structure
learning problems, which may mean two different things – the
problem is as pessimistic as Robins and Wasserman had warned us;
or real scientists just do not give a bleep

• Combining more and more interventional data might be promising!
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Q2). Tian’s ID algorithm

• Identification theory with latent variables can be answered by Tian’s
ID algorithm

• In fact, Tian and Pearl (2002) only proved ID algorithm is
sound (like sufficiency): if ID outputs an identification formula
for the causal query, then such formula is correct
REF: Tian, Pearl. A General Identification Condition for Causal
Effects. AAAI 2002.

• Later, Shpitser and Pearl proved ID algorithm is complete (like
necessary): if ID outputs “not identifiable”, then neither do any
other algorithms
Shpitser, Pearl. Identification of Joint Interventional
Distributions in Recursive Semi-Markovian Causal Models.
AAAI 2006.
Shpitser, Pearl. Complete identification methods for the causal
hierarchy. JMLR 2008.

https://ftp.cs.ucla.edu/pub/stat_ser/R290-A.pdf
https://ftp.cs.ucla.edu/pub/stat_ser/R290-A.pdf
https://www.aaai.org/Papers/AAAI/2006/AAAI06-191.pdf
https://www.aaai.org/Papers/AAAI/2006/AAAI06-191.pdf
https://www.aaai.org/Papers/AAAI/2006/AAAI06-191.pdf
https://www.jmlr.org/papers/volume9/shpitser08a/shpitser08a.pdf
https://www.jmlr.org/papers/volume9/shpitser08a/shpitser08a.pdf
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A very brief introduction to theory of ADMGs



88/ 107

CADMGs

ADMGs G(V ,E ) with E containing bi-directed edges

CADMGs (Conditional ADMGs) G(V ′,W ,E ′), with V ′ and W denoting
the “random” and “fixed” vertices respectively:

1. V = V ′ ∪W

2. No edges among vertices in W

3. Removing all the arrows into W

4. Turning circles around vertices in W into squares

X1 X2 X3

ADMG:
G({X1,X2,X3},E)

Fixing X2
=⇒

X1 X2 X3

CADMG:
G({X1,X2}, {X3},E)
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ID algorithm for ADMG

• Question: Is p(Y (a) = y) or E[Y (a)] identifiable given an ADMG G
and (subsets of) vertices A and Y ?

• Jin Tian (Iowa State U.) solved the problem in his PhD thesis and
proposed a complete and sound algorithm, later called Tian’s ID
algorithm (see next page)

• But in this course, we will give you a one-line ID algorithm
reformulated using theory of ADMG and “nested Markovian
properties”

• Some papers to read:
Richardson, Evans, Robins, Shpitser. 2017
Bhattacharya, Nabi, Shpitser. 2020

https://arxiv.org/pdf/2003.12659.pdf
https://arxiv.org/pdf/1701.06686.pdf
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Preparatory definitions

• Given any vertex v , district disG(v): maximal bidirected components
containing v

• Set of districts D(G)

• Markov Blanket: mbG(v) = paG(disG(v)) ∪ (disG(v) \ {v})

• Question: when ADMG G is a DAG, mbG(v) =?

Proof.
For DAG, disG(v) = {v}. Then

mbG(v) ≡ paG(v) ∪ ({v} \ {v}) ≡ paG(v).

So Markov Blanket generalizes Parent Set in DAG to ADMG
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Districts
Define a district in a C/ADMG to be maximal sets connected by
bi-directed edges:

1

2

3

4

5

1 3 5

u v

2 4

X

u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

=
X

u

p(u) p(x1 | u) p(x2 | u)
X

v

p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3)

= q(x1, x2) · q(x3, x4 | x1, x2) · q(x5 | x3) .

=
Y

i

qDi (xDi | xpa(Di )\Di
)

Districts are called ‘c-components’ by Tian.

18 / 7990/ 107
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Fixing operation
• Tian’s ID algorithm requires one line by introducing the “fixing”

operation, which generalizes conditioning and marginalization

• Fixable vertices

F (G) := {v ∈ V : disG(v) ∩ deG(v) = {v}}

In words, v is fixable if no vertex x 6= v s.t.

v ↔ · · · ↔ x and v → · · · → x

Trivial implication: singletons are always fixable and vertices in a
DAG are always fixable

• Examples:

A M Y

Front door: DG = {{M}, {A,Y }},
F (G) = {M,Y }

A B C D

Verma: DG = {{A}, {B,D}, {C}},
F (G) = {A,C ,D}
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Fixing operation
• Tian’s ID algorithm requires one line by introducing the “fixing”
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Fixing operation: Graphical operation

For every r ∈ F (G), graphically fixing operation is defined as

φ{r}(G) := G(V \ {r},W ∪ {r},E ′)

where E ′ is edge set in the original ADMG G by removing all edges
pointing towards {r}

Fixing operation might introduce new vertices to the fixable sets

A M Y

F (G) = {M,Y }

Fixing M
=⇒ A M Y

φM(G),F (φM(G)) = {A,Y }
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Fixing operation: Algebraic operation

p(xV |xW ) is the distribution of all the random vertices of a CADMG
G(V ,W ,E ); fixing a vertex {r} means

φ{r}(p(xV |xW );G) =
p(xV |xW )

p(xr |xmbG(r))

If r ∈ F (G), then φ{r}(p(xV |xW );G) ≡ p(xV\{r}|xW∪{r})
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Sequential randomized trial example
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Using fixing to derive the ID formula

A0 L1 A1 Y

p(a0, `1, a1, y) ≡
p(a0)p(a1|a0, `1)q(`1, y |a0, a1),
where q(`1, y |a0, a1) =∫
p(`1|u, a0)p(y |u, a0, `1, a1)p(u)du

A0 L1 A1 Y

Fix A1:
p(a0, `1, a1, y)

p(a1|a0, `1)
≡

p(a0)q(`1, y |a0, a1) =: p(1)(a0, `1, y |a1)

A0 L1 A1 Y

Fix A0:
p(1)(a0, `1, y |a1)

p(a0)
≡ q(`1, y |a0, a1) =:

p(2)(`1, y |a0, a1)

A0 L1 A1 Y

Fix L1:
p(2)(`1,y|a0,a1)
q(`1|a0,a1,y)

= q(y |a0, a1) =: p(3)(y |a0, a1)

p(3)(y |a0, a1) = q(y |a0, a1) =
∫
`1
q(`1, y |a0, a1)d`1 is the g-formula

because

q(`1, y |a0, a1) =
p(a0, `1, a1, y)

p(a0)p(a1|a0, `1)
= p(`1|a0)p(y |a0, `1, a1)
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The orders of fixing operations don’t matter

• Comparing the above two slides, you will discover that they used two
different fixing sequences but both lead to the same ID formula

• This is the main result that Richardson, Evans, Robins and Shpitser
proved in 2017 (Theorem 32 of RERS17): otherwise using fixing
operation would have been an absurd idea!
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Reachable Subgraphs and Intrinsic Sets

• Before stating Tian’s ID algorithm in one line, we need one more
definition

• Intrinsic set: A set that is a district in a reachable subgraph derived
from an ADMG G(V ,W ,E ) ≡ G

• Reachable subgraph: A subgraph G′ of G is said to be reachable
from G if there exists a sequence of fixable vertices
w = (w1, · · · ,wT ) such that G′ = φwT

◦ · · · ◦ φw1(G)

• The set of all intrinsic sets in G is denoted as I(G)
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Tian’s ID algorithm

Generalizing the above special case, Tian’s ID algorithm can be
formulated as follows

Theorem 4 (Theorem 49 of RERS17)

Given an ADMG G(V ,E ) ≡ G and two disjoint subsets A,Y ⊆ V , let
←−
Y := anGV\A(Y ). If D(G←−

Y
) ⊆ I(G), then

p(XY (xA) = xY ) =

∫
x←−
Y \Y

∏
D∈D(G←−

Y
)

p(XD(xpaG(D)\D) = xD)dx←−
Y \Y

=

∫
x←−
Y \Y

∏
D∈D(G←−

Y
)

φV\D(p(xV );G)dx←−
Y \Y .

(1)

If not, there exists D ∈ D(G←−
Y

) not in the intrinsic sets and
p(XY (xA) = xY ) is unidentifiable.

Think about the following question: Try to translate the above theorem
using SWIGs
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For the sake of comparison
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Intuition of Tian’s ID algorithm

• Only the subgraph G∗ of the ancestors of Y , with the causal path to
Y not including A, needs to be considered for identifying
p(XY (xA) = xY )

• Divide-and-Conquer: Get the set of districts of G∗, then consider
district by district

• Then

p(XY (xA) = xY ) =

∫
x←−
Y \Y

∏
D∈D(G←−

Y
)

p(XD(xpaG(D)\D) = xD)dx←−
Y \Y

• Find if p(XD(xpaG(D)\D) = xD) is identified
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Exercise 1: Verma or sequential randomized trial

G A0 L1 A1 Y

←−
Y = anGV\A(Y ) A0 L1 A1 Y

So D(G←−
Y

) = {Y }, paG(Y ) = {A0,A1} and

p(XY (xA0 , xA1) = xY ) =
∏

D∈D(G←−
Y
)

p(XD(xpaG(D)\D) = xD)

= p(XY (xA0 , xA1) = xY )

Identified? Is {Y } an intrinsic set? Yes! We have seen {Y } is reachable
by fixing A1,A0, L1
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Exercise 2: Front door

G A M Y

←−
Y = anGV\A(Y ) A M Y

So D(G←−
Y

) = {{M}, {Y }}, paG(M) = {A}, paG(Y ) = {M} and

p(XY (xA) = xY ) =

∫
x←−
Y \Y

∏
D∈D(G←−

Y
)

p(XD(xpaG(D)\D) = xD)dx←−
Y \Y

=

∫
xM

p(XY (xM) = xY )p(XM(xA) = xM)dxM

Identified? Are {M} and {Y } intrinsic sets? Yes for M; Yes for Y by
fixing M and A
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Exercise 3: causal effect of A on Y = {Y1,Y2}

G B

A Y1

C Y2

←−
Y = anGV\A(Y ) B

A Y1

C Y2

So D(G←−
Y

) = {{B,C ,Y1,Y2}} with the only district D = {B,C ,Y1,Y2}.
Identified? Is D intrinsic? No! Because A is not fixable in G!
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Optimal ID formula for ADMG?

• All current results focus solely on adjustment formula (i.e. only for
single time point case)

• Smucler, Sapienza, Rotnitzky (SSR) 2020 developed a sound
algorithm for ADMGs

• Runge proposed a sound and complete algorithm for ADMGs

https://arxiv.org/pdf/2004.10521.pdf
https://arxiv.org/pdf/2102.10324.pdf
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Software

• Ilya Shpitser’s ananke looks incredible

• We will see some python code using ananke if time permitted

• There are tons of examples you can try out and its functions include

• Differentiable causal discovery/structure learning with linear
SEM allowing latent variables to recover certain ADMGs

• Given an ADMG, whether a causal query is identifiable
• If over-identified, which formula should we use (Shpitser’s group

is working on a symbolic computation software just like
mathematica or maple)

https://ananke.readthedocs.io/en/latest/notebooks/quickstart.html
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Summary and Outlook

• ADMG preserves all the Markovian and nested Markovian properties
(dormant conditional independencies by fixing) of the underlying
latent-variable DAG: these are equality/algebraic constraints

• In fact, for certain latent variable DAGs, they also induce certain
inequality/semi-algebraic constraints that may be helpful for partial
identification

• Except probability and graph/combinatorics, algebraic geometry is
another subfield of pure math that is extremely useful for causal
inference

• We will discuss inequality constraints in next chapter
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Any Questions?


