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Some references

For the ease of presentation, we only consider two different time points.
For general case, you can bootstrap from the materials of this note by
induction. Also read the following papers:

Naimi, Cole, Kennedy. An introduction to g methods. International
Journal of Epidemiology. 2017.

Robins. Association, causation, and marginal structural models.
1999.

Robins. Marginal Structural Models versus Structural Nested Models
as Tools for Causal Inference. 2000.

Murphy. Optimal dynamic treatment regimes. JRSS-B 2003.

Robins. Optimal Structural Nested Models for Optimal Sequential
Decisions. 2004

Zhang, Bareinboim. Designing Optimal Dynamic Treatment
Regimes: A Causal Reinforcement Learning Approach. ICML 2020.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074945/pdf/dyw323.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6074945/pdf/dyw323.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/philosophy.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/philosophy.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/msm-cie-fnl.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/msm-cie-fnl.pdf
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/1467-9868.00389
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/seattlemay04final.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/seattlemay04final.pdf
https://causalai.net/r57.pdf
https://causalai.net/r57.pdf
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From DAG to SWIG: step by step

A0 L1 A1 Y

U
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From DAG to SWIG: step by step

A0 a0 L1(a0) A1(a0) a1 Y (a0, a1)

U
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One more example of SWIG: Verma
Can we identify E[Y (a0, a1)] in the following complete Verma’s graph?

A0 L1 A1 Y

U

SWIG?

A0 a0 L1(a0) A1(a0) a1 Y (a0, a1)

U

Reading CI: Y (a0, a1) ⊥⊥ A0 and Y (a0, a1) ⊥⊥ A1(a0)|L1(a0),A0
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Story behind Verma’s graph

• Two-stage sequentially randomized trial

• At t = 0, flip a coin to make a decision if A0 = 0 or 1

• At t = 1, observe a reward L1 of the action A0

• Based on the historical information H̄1 = (A0, L1) (for those
familiar with stochastic processes, think of it as a filtration),
make a randomized decision if A1 = 0 or 1, with probability
Pr(A1 = 1|A0, L1)

• Finally observe the outcome Y

• Discuss why in a sequentially randomized trial, there could still exist
an unmeasured common cause U of L1 and Y
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Time-varying treatment effects

A0 L1 A1 Y

U

Goal: θ = E[Y (a0, a1)] from data e.g. τ = E[Y (1, 1)]− E[Y (1, 0)]

Historically, this was posed as an impenetrable problem by then famous
epidemiologist E.S. Gilbert (mother of Peter Gilbert, HIV epidemiologist
at UW) because:

(1) L1 is a mediator through which the action/treatment A0 causes the
outcome Y

(2) L1 is a confounder which causes both the action/treatment A1 and
the outcome Y

(3) Feedback from Y to A1 via U
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Conventional analytical methods fail to estimate
time-varying causal effect

• When E.S. Gilbert posed the problem, people only had regression in
the toolbox

• The question became whether one should adjust for L1 in the
regression Y ∼ A0,A1

A0 L1 A1 Y

U
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• When E.S. Gilbert posed the problem, people only had regression in
the toolbox

• The question became whether one should adjust for L1 in the
regression Y ∼ A0,A1
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U

• Not adjusting for L1: backdoor path A1 ← L1 → Y is open
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Conventional analytical methods fail to estimate
time-varying causal effect

• When E.S. Gilbert posed the problem, people only had regression in
the toolbox

• The question became whether one should adjust for L1 in the
regression Y ∼ A0,A1

A0 L1 A1 Y

U

• Regression type control fails regardless adjusting for L1 or not
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Time varying treatment effect: identification conditions
Similar to the single time point case, we have the following set of
identification conditions

1 Consistency:

Y =
∑
a0,a1

Y (a0, a1)1{A0 = a0,A1 = a1}

A1 =
∑
a0

A1(a0)1{A0 = a0}

L1 =
∑
a0

L1(a0)1{A0 = a0}

2 Positivity/Overlap:

Pr(A0 = a0) > 0,∀a0

Pr(A1 = a1|A0 = a0, L1 = `1) > 0,∀a1, a0, `1

3 Sequential ignorability/randomization:

1. Y (a0, a1) ⊥⊥ A0

2. Y (a0, a1) ⊥⊥ A1(a0)|L1(a0),A0
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Time varying treatment effect: identification g-formula

E[Y (a′0, a
′
1)]

3.1
= E[Y (a′0, a

′
1)|A0 = a′0]

= E[E[Y (a′0, a
′
1)|A0 = a′0, L1(a′0)]|A0 = a′0]

3.2
= E[E[Y (a′0, a

′
1)|A0 = a′0, L1(a′0),A1(a′0) = a′1]|A0 = a′0]

1
= E[E[Y |A0 = a′0, L1,A1 = a′1]|A0 = a′0]

=

∫
y

∫
`1

yf (Y = y |A0 = a′0, L1 = `1,A1 = a′1)f (L1 = `1|A0 = a′0)d`1dy
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From g formula to IPW: change of measure

Formally, g formula for E[Y (a′0, a
′
1)] is simply replacing the treatment

densities in E[Y ]:

E[Y ] =

∫
yf (y |a0, `1, a1)f (a1|a0, `1)f (`1|a0)f (a0)da0d`1da1dy

by point mass at a′0 and a′1

E[Y (a′0, a
′
1)] =

∫
yf (y |a0, `1, a1)1(a1 = a′1)f (`1|a0)1(a0 = a′0)da0d`1da1dy

Can you directly write the IPW formula now?

E[Y (a′0, a
′
1)] = E

[
1{A0 = a′0}1{A1 = a′1}

Pr(A0 = a′0)Pr(A1 = a′1|L1,A0 = a′0)
Y

]
≡ Eipw [Y ]
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A more intuitive identification strategy

Formally, g formula for E[Y (a′0, a
′
1)] is simply replacing the treatment

densities in E[Y ]:

E[Y ] =

∫
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• The derivation of g formula is a bit mechanical
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DAG?

A0 L1 A1 Y

U
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Formally, g formula for E[Y (a′0, a
′
1)] is simply replacing the treatment

densities in E[Y ]:

E[Y ] =

∫
yf (y |a0, `1, a1)f (a1|a0, `1)f (`1|a0)f (a0)da0d`1da1dy
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∫
yf (y |a0, `1, a1)1(a1 = a′1)f (`1|a0)1(a0 = a′0)da0d`1da1dy

• The derivation of g formula is a bit mechanical

• More insightful interpretation? Cutting Arrows!

a′0 L1 a′1 Y

U
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Oh, the world after change of measure!

In the IPW representation, it is obvious that we have change the
distribution of observables and this new distribution (let’s call it IPW
distribution) is represented by

a′0 L1 a′1 Y

U

Under this new distribution, we can either use the backdoor criterion or
turn this blue DAG into a blue SWIG. Either way, we can read off that no
need to adjust for/control for L1, which also explains why we just take
the marginal mean of Y under the IPW distribution

E[Y (a0, a1)] = Eipw [Y ]
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static regimes (hard intervention) vs. dynamic regimes
(soft intervention)

Formally, g formula for E[Y (a′0, a
′
1)] is simply replacing the treatment

densities in E[Y ]:

E[Y ] =

∫
yf (y |a0, `1, a1)f (a1|a0, `1)f (`1|a0)f (a0)da0d`1da1dy

by point mass at a′0 and a′1

E[Y (a′0, a
′
1)] =

∫
yf (y |a0, `1, a1)δ(a1 = a′1)f (`1|a0)δ(a0 = a′0)da0d`1da1dy

• A0 = a′0,A1 = a′1 is a static/fixed treatment regime/policy/strategy

• dynamic regime/policy/strategy? e.g. g = (a′0, L1)

• parameter of interest? E[Y (g)] = E[Y (a′0, L1)]

• what is the g formula?

• what is the IPW formula?
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From DAG to dynamic regime SWIG

A0 L1 A1 Y

U
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From DAG to dynamic regime SWIG

A0 a′0 L1 A1 A1(g) Y

U
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From DAG to dynamic regime SWIG

Since A1(g) = L1:

A0 a′0 L1 A1 A1(g) Y

U
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From DAG to dynamic regime SWIG

Completed!

A0 a′0 L1(a′0) A1(a′0) A1(g) Y (g)

U

Is E[Y (g)] identified? Yes! Y (g) ⊥⊥ A0 and Y (g) ⊥⊥ A1(a′0)|L1(a′0)
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Another example
DAG

A0 L1 A1 Y

U1
U2

Dynamic Regime SWIG:

A0 a′0 L1(a′0) A1(a′0) A1(g) Y (g)

U1
U2

Y (g) 6⊥⊥ A0: can you see why? What if we change the SWIG to static
regime case
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Marginal Structural Models (MSM)

• We will only use one slide to explain MSM; for more details, check
Hernan and Robins’ textbook

• For two decision occasions, we can still estimate E[Y (a0, a1)] for
each possible a0, a1

• But what if we have T = 100 decision occasions?

• Then we have to make complexity-reducing modeling assumptions
such as

E[Y (ā)] = β>h(ā)

and usually such a model is related to the scientific problem itself
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• For two decision occasions, we can still estimate E[Y (a0, a1)] for
each possible a0, a1

• But what if we have T = 100 decision occasions?
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connection to off-policy learning
• What is off-policy learning? Observe naturally generated data

according to some distribution

(L0,A0, · · · , Lt ,At , · · · ,Y )

• We are not interested in learning how A0, · · · are assigned by nature
(by the law in the observed data)

• We are interested in learning a new policy, e.g.

A0|L0 = `0 ∼ Bern

(
exp{0.5`0}

1 + exp{0.5`0}

)
, · · ·

• easy task: MSM/change of measure/density ratio/IPW

• optimal dynamic treatment regimes: consider a class of possible
regimes g for each action/decision occasion,

gopt = arg maxg∈GE[Y (g)]
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observing reward at each time point?

In more RL settings, we have the following data structure (Y denotes
rewards)

(L0,A0,Y0, · · · , Lt ,At ,Yt , · · · ,YT )

which is nothing but a longitudinal study with repeated outcome
measurements (we have been only discussing longitudinal studies without
repeated outcome)
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Mediation analysis revisited: treatment-induced
mediator-outcome confounding

REF: Identifiability of path-specific effects. UAI 2005
REF: Effect decomposition in the presence of an exposure-induced
mediator-outcome confounder. Epidemiology 2014

A M

L

Y

Suppose we are interested in the effect of A on Y through and not
through M
Recall the cross-world ID assumption: Y (a,m) ⊥⊥ M(a′) (since there
exist no baseline confounders)

https://escholarship.org/content/qt45x689gq/qt45x689gq.pdf
https://journals.lww.com/epidem/FullText/2014/03000/Effect_Decomposition_in_the_Presence_of_an.22.aspx
https://journals.lww.com/epidem/FullText/2014/03000/Effect_Decomposition_in_the_Presence_of_an.22.aspx
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Suppose we are interested in the effect of A on Y through and not
through M
Recall the cross-world ID assumption: Y (a,m) ⊥⊥ M(a′) (since there
exist no baseline confounders)

• Due to the presence of L, Y (a,m) 6⊥⊥ M(a′) but Y (a,m) ⊥⊥ M(a′)|L:
by NPSEM-IE

Y (a,m) = fY (a, L,m, εY ),M(a′) = fM(a′, L, εM)

• But as soon as we condition on L, the path A→ L→ Y is blocked,
which is a part of the effect of A on Y not through mediator M
• Taken together, natural direct/indirect effects (with respect to M) are
unidentified
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Mediation analysis revisited: treatment-induced
mediator-outcome confounding

A M

L

Y

Suppose we are interested in the effect of A on Y through and not
through M

Natural direct/indirect effects (with respect to M) are unidentified, but
Interventional Direct/Indirect Effects can be identified even with the
presence of L. Figure out why on your own.
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Structural nested models

• Another class of causal models developed by Robins is Structural
Nested Models (SNM)

• When T = 1, in a special case (Structural Nested Mean Model or
SNMM), we can model the CATT (conditional average treatment
effect on the treated):

E[Y (a)|X = x ,A = a]− E[Y (0)|X = x ,A = a] = γ(x , a;ψtrue)

s.t. γ(x , 0;ψ) = 0 for any x , ψ and γ(x , a;ψtrue) = 0 if ψtrue = 0

• If ψtrue = 0, it encodes the null hypothesis that no causal effect of A
on Y

• A good reference:
Vansteelandt, Joffe. Structural Nested Models and G-estimation:
The Partially Realized Promise. Stat. Sci. 2014.

https://arxiv.org/pdf/1503.01589.pdf
https://arxiv.org/pdf/1503.01589.pdf
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SNMM when T = 1

• In SNMM, the goal is to learn about ψtrue , which encodes the
treatment effect

• Create pseudo-outcome (also called mimicking counterfactuals in a
paper by Judith Lok): given any ψ,

Ỹi (ψ) := Yi − γ(Xi ,Ai ;ψ) ∀ i = 1, · · · , n

• What counterfactual does Ỹ (ψtrue) try to mimick?

• By definition:

E[Ỹ (ψtrue)|X ,A] = E[Y |X ,A]− γ(X ,A;ψtrue)

= E[Y (A)|X ,A]− E[Y (A)|X ,A] + E[Y (0)|X ,A]

= E[Y (0)|X ,A]

https://arxiv.org/abs/math/0409045
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SNMM when T = 1: What property does ψtrue have?

• Under no unmeasured confounding, and by tower law of expectation

E[Ỹ (ψtrue)|X ,A] ≡ E[Y (0)|X ,A] ≡ E[Y (0)|X ] ≡ E[Ỹ (ψtrue)|X ]

• Turning conditional moment constraint into marginal moment
constraint: for any measurable function g ,

E
[{

Ỹ (ψtrue)− E[Ỹ (ψtrue)|X ]
}
d(A,X )

]
≡ 0

• So when given i.i.d. data {Xi ,Ai ,Yi}ni=1, we could estimate ψtrue by
solving

1

n

n∑
i=1

Ỹi (ψ̂)− Ê[Ỹ (ψ̂)|Xi ]︸ ︷︷ ︸
estimated by regression techniques

 d(Ai ,Xi ) = 0

with some user-specified choice of g with the output dimension
equal to dim(ψ) (often decided by computational convenience)
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Some remarks

• The moment constraint (Robins called it “G-estimation”) can be
made “doubly-robust”:

E
[{

Ỹ (ψtrue)− E[Ỹ (ψtrue)|X ]
}
{d(A,X )− E[d(A,X )|X ]}

]
≡ 0

• One can also use “generalized methods of moment” (GMM) from
the econometrics literature to solve the above problem by solving a
minimax optimization problem

min
ψ

max
g∈G

1

n

n∑
i=1

{
Ỹi (ψ)− Ê[Ỹ (ψ)|Xi ]

}
d(Ai ,Xi )

• This was recently rebranded as “adversarial training/learning” by
computer scientists

• Another option is to pick the g such that the estimator ψ̂ has the
smallest variance; this strategy is often only of theoretical interest as
it often leads to estimators that are hard to compute
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Exercise

A very good exercise for you to gain deeper understanding of the above
approach is to consider the following SNMM model:

X ∈ {0, 1},A ∈ {0, 1}
E[Y (a)|X = x ,A = a]− E[Y (0)|X = x ,A = a] = (ψtrue,0 + ψtrue,1x)a

Try to study the following questions:

• Is this model saturated, i.e. no more or less parameters to perfectly
fit the data?

• What is a reasonable choice of g? Hint: since dim(ψtrue) = 2,
d(x , a) : {0, 1}2 → R2

• With d(x , a) = (a, ax)>, derive closed-form formula of ψtrue

• Combining SNMM, the formula of ψtrue and the assumption that
both X and A are binary, derive the formula of E[Y (1)] and see if its
formula is familiar to you
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SNMM when T = 2

• Modeling philosophy: Blip-down the treatment effect

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,X1 = x1,A0 = a0,A1 = a1]

= γ1(x0, x1, a0, a1;ψ
(1)
true);

E[Y (a0, 0)− Y (0, 0)|X0 = x0,A0 = a0]

= γ0(x0, a0;ψ
(0)
true)

with γ0, γ1 satisfying similar restrictions to T = 1 case

• Under sequential randomization/ignorability/no unmeasured
confounding, we construct the following mimicking counterfactuals
to estimate the causal parameters ψtrue

Ỹ (1)(ψ(0), ψ(1)) = Y − γ1(X0,X1,A0,A1;ψ(1))

Ỹ (0)(ψ(0), ψ(1)) = Ỹ (1)(ψ(0), ψ(1))− γ0(X0,A0;ψ(0))
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opt-SNM: optimal-regime SNM, combining dynamic programming with
SNM

REF: Optimal structural nested models for optimal sequential decisions.
2004 (138 pages)

https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/seattlemay04final.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/seattlemay04final.pdf
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opt-SNM: T = 2
For optimal dynamic treatment regimes, recall that our goal is to learn
(say treatments are binary)

gopt := arg max
g=(g0,g1),g0:X0 7→{0,1},g1:(X0,A0,X1) 7→{0,1}

E[Y (g)]

opt-SNM also postulates the following model at the second occasion:

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γopt1 (x0, a0, x1, a1;ψ
opt(1)
true ).

Define

gopt
1 (x0, a0, x1) := arg max

a1∈{0,1}
γopt1 (x0, a0, x1, a1;ψ

opt(1)
true )

opt-SNM then postulates the following model at the first occasion

E[Y (a0, g
opt
1 )− Y (0, gopt

1 )|X0 = x0,A0 = a0]

= γopt0 (x0, a0;ψ
opt(0)
true )



36/ 44

opt-SNM: T = 2
For optimal dynamic treatment regimes, recall that our goal is to learn
(say treatments are binary)

gopt := arg max
g=(g0,g1),g0:X0 7→{0,1},g1:(X0,A0,X1) 7→{0,1}

E[Y (g)]

opt-SNM also postulates the following model at the second occasion:

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γopt1 (x0, a0, x1, a1;ψ
opt(1)
true ).

Define

gopt
1 (x0, a0, x1) := arg max

a1∈{0,1}
γopt1 (x0, a0, x1, a1;ψ

opt(1)
true )

opt-SNM then postulates the following model at the first occasion

E[Y (a0, g
opt
1 )− Y (0, gopt

1 )|X0 = x0,A0 = a0]

= γopt0 (x0, a0;ψ
opt(0)
true )



36/ 44

opt-SNM: T = 2
For optimal dynamic treatment regimes, recall that our goal is to learn
(say treatments are binary)

gopt := arg max
g=(g0,g1),g0:X0 7→{0,1},g1:(X0,A0,X1) 7→{0,1}

E[Y (g)]

opt-SNM also postulates the following model at the second occasion:

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γopt1 (x0, a0, x1, a1;ψ
opt(1)
true ).

Define

gopt
1 (x0, a0, x1) := arg max

a1∈{0,1}
γopt1 (x0, a0, x1, a1;ψ

opt(1)
true )

opt-SNM then postulates the following model at the first occasion

E[Y (a0, g
opt
1 )− Y (0, gopt

1 )|X0 = x0,A0 = a0]

= γopt0 (x0, a0;ψ
opt(0)
true )



36/ 44

opt-SNM: T = 2
For optimal dynamic treatment regimes, recall that our goal is to learn
(say treatments are binary)

gopt := arg max
g=(g0,g1),g0:X0 7→{0,1},g1:(X0,A0,X1) 7→{0,1}

E[Y (g)]

opt-SNM also postulates the following model at the second occasion:

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γopt1 (x0, a0, x1, a1;ψ
opt(1)
true ).

Define

gopt
1 (x0, a0, x1) := arg max

a1∈{0,1}
γopt1 (x0, a0, x1, a1;ψ

opt(1)
true )

opt-SNM then postulates the following model at the first occasion

E[Y (a0, g
opt
1 )− Y (0, gopt

1 )|X0 = x0,A0 = a0]

= γopt0 (x0, a0;ψ
opt(0)
true )



37/ 44

opt-SNM: T = 2

opt-SNM also postulates the following model at the second occasion:

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γopt1 (x0, a0, x1, a1;ψ
opt(1)
true ).

Define

gopt
1 (x0, a0, x1) := arg max

a1∈{0,1}
γopt1 (x0, a0, x1, a1;ψ

opt(1)
true )

opt-SNM then postulates the following model at the first occasion

E[Y (a0, g
opt
1 )− Y (0, gopt

1 )|X0 = x0,A0 = a0]

= γopt0 (x0, a0;ψ
opt(0)
true )

Define
gopt

0 (x0) := arg max
a0∈{0,1}

γopt0 (x0, a0;ψ
opt(0)
true )



37/ 44

opt-SNM: T = 2

opt-SNM also postulates the following model at the second occasion:

E[Y (a0, a1)− Y (a0, 0)|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γopt1 (x0, a0, x1, a1;ψ
opt(1)
true ).

Define

gopt
1 (x0, a0, x1) := arg max

a1∈{0,1}
γopt1 (x0, a0, x1, a1;ψ

opt(1)
true )

opt-SNM then postulates the following model at the first occasion

E[Y (a0, g
opt
1 )− Y (0, gopt

1 )|X0 = x0,A0 = a0]

= γopt0 (x0, a0;ψ
opt(0)
true )

Define
gopt

0 (x0) := arg max
a0∈{0,1}

γopt0 (x0, a0;ψ
opt(0)
true )



38/ 44

Try to convince yourself

the following fact: under sequential randomization and the assumption
that the postulated opt-SNM is the correct model,

(gopt
0 (x0), gopt

1 (x0, a0, x1))> ≡ gopt

where

gopt := arg max
g=(g0,g1),g0:X0 7→{0,1},g1:(X0,A0,X1) 7→{0,1}

E[Y (g)]
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Difference between opt-SNM and Susan Murphy’s work

• As I discussed in Lecture 1, Susan Murphy is the first person
studying the problem of estimating optimal dynamic regimes in
statistics
REF: Optimal dynamic treatment regimes. JRSS-B Discussion
Paper 2003
In particular, the discussions by several other famous statisticians are
highly recommended for students to read (e.g. Richard Gill pointed
out a measure-theoretic error made by Susan Murphy)

• Susan Murphy’s framework is essentially the same as Robins’
opt-SNM, with only one difference that results in different estimating
strategy and the statistical properties of the estimator; see
REF: Demystifying optimal dynamic treatment regimes. Biometrics
2007

https://rss.onlinelibrary.wiley.com/doi/full/10.1111/1467-9868.00389
https://rss.onlinelibrary.wiley.com/doi/full/10.1111/1467-9868.00389
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2006.00686.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2006.00686.x
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Difference between opt-SNM and Susan Murphy’s work

• For T = 2, Susan Murphy postulates models for the regrets

E[Y (a0, a1)− Y (a0, g
opt
1 )|X0 = x0,A0 = a0,X1 = x1,A1 = a1]

= γregret1 (x0, a0, x1, a1;ψ
regret(1)
true )

E[Y (a0, g
opt
1 )− Y (gopt

0 , gopt
1 )|X0 = x0,A0 = a0]

= γregret0 (x0, a0;ψ
regret(0)
true )

• Advantage for regret modeling: many existing algorithms such as
Q-learning are about regret minimization so we can stand on giant’s
shoulder

• Advantage for opt-SNM: at each time step, blip model only
contrasts the treatment effect between at and “reference treatment”
0, no optimization is involved once the future optima is determined
by dynamic programming

• For more detailed comparison: see page 55 of REF: Robins 2004.

https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/seattlemay04final.pdf
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O-learning framework
Finally, we introduce another framework for inferring optimal treatment
regimes, which is O-learning (first developed by Michael Kosorok and
colleagues)

• REF: Estimating individualized treatment rules using outcome
weighted learning

• In this note, I will only describe the O-learning framework for T = 1
and you can generalize to T = 2 on your own

• Key observation: for convenience, we recode the binary treatment to
{−1,+1}-valued

gopt(x) := arg max
g :x 7→{−1,+1}

E[Y (g)] ≡ E
[
1{A = g(X )}Y

p(A|X )

]
≡ arg min

g :x 7→{−1,+1}
E
[

Y

p(A|X )
1{A 6= g(X )}

]
︸ ︷︷ ︸

weighted classification error

https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.695674
https://www.tandfonline.com/doi/abs/10.1080/01621459.2012.695674
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O-learning framework

• Of course, since indicator function is involved in the objective
function, one needs to introduce surrogate losses (e.g. softmax etc.)

• But many existing theoretical results in classification can be directly
applied (e.g. margin theory, VC-dimension complexity ...)

• A good area for optimization people to work on
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Next time

Coding exercise (in R) from Lectures 2 & 3; Methods for dealing with
unmeasured confounding beyond sensitivity analysis
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Any Questions?


