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two nice online seminars

online causal inference seminar (ocis):
https://sites.google.com/view/ocis/

the Gary Chamberlain online seminar in econometrics:
https://www.chamberlainseminar.org/

https://sites.google.com/view/ocis/
https://www.chamberlainseminar.org/
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Definition of a confounder

A variable is a confounder, shall it satisfy the following axioms:

▶ controlling for all “confounders” suffices to control for
“confounding”

▶ each confounder should help eliminate or reduce “confounding bias”
in some context

REF: VanderWeele, Shpitser. On the definition of a confounder. AoS
(2013).

C is a confounder relative to the effect of A on Y if there exists a set of
pre-treatment (A) covariates X such that

(1) Y (a) ⊥⊥ A|X ,C

(2) But there is no proper subset Z ⊊ (X ,C ) such that Y (a) ⊥⊥ A|Z

https://core.ac.uk/download/pdf/61320649.pdf
https://core.ac.uk/download/pdf/61320649.pdf
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Rigorous derivation of ATE identification

We need the following ID (identification) conditions

1. Consistency: Y = AY (1) + (1− A)Y (0)

2. Positivity: 0 < Pr(A = a|X ) < 1 almost surely

3. No unmeasured confounding/ignorability: Y (a) ⊥⊥ A|X , ∀a ∈ {0, 1}

Static g-formula of E[Y (1)] in observational studies under ignorability

E[Y (1)] = E[E[Y (1)|X ]]

2,3
= E[E[Y (1)|X ,A = 1]]

1
= E[E[Y |X ,A = 1]]
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1. Consistency: Y = AY (1) + (1− A)Y (0)

2. Positivity: 0 < Pr(A = a|X ) < 1 almost surely

3. No unmeasured confounding/ignorability: Y (a) ⊥⊥ A|X , ∀a ∈ {0, 1}

IPW of E[Y (1)] in observational studies under ignorability

E[Y (1)] = E[E[Y |X ,A = 1]]

=

∫
E[Y |X = x ,A = 1]p(x)dx

2
=

∫
y

p(A = 1|X = x)
p(y |X = x ,A = 1)p(A = 1|X = x)p(x)dydx

=

∫
ay

p(A = 1|X = x)
p(y |X = x ,A = 1)p(A = a|X = x)p(x)dydadx

= E
[

AY

p(A = 1|X )

]
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A question to think about

Can you derive the IPW formula without using g-formula?
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Causal Identification

▶ As we have mentioned, identification is the core that distinguishes
causal inference from other branches of statistics or data sciences

▶ Identification connects data to science

▶ High-level description:
▶ What are we trying to learn from data? Write down the

quantity of interest in terms of counterfactuals

▶ Looking for a set of conditions (identification conditions) such
that

▶ Counterfactuals can be written as functionals/parameters of the
distribution of observables

▶ The rest is statistics and computing (optimization)
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outline

▶ We will take a deeper dive into counterfactuals and DAGs (SEM will
not be our focus)

▶ We will learn some basic knowledge of DAGs

▶ Then we will show how to unify counterfactual and DAG into a
single entity: SWIG

▶ We will also learn some philosophical difference between Robins and
Pearl, manifested by the difference between Robins’ SWIG and
Pearl’s NPSEM-IE causal model

▶ Sensitivity analysis

▶ Mediation analysis

▶ Next chapter is on dynamic causal inference, and mediation analysis
is also a sort of dynamic causal inference
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Directed Acyclic Graphs (DAGs)

▶ (Re-)invented by Judea Pearl in 1980’s and percolated into statistics
around 1990’s after his paper in Biometrika

▶ Actual origin: geneticist Sewall Wright in 1918, 1934

▶ DAGs are very convenient to represent background causal knowledge

▶ A causes Y : in word, it means{
i) A precedes Y in time ordering
ii) a change in Y is only due to a change in A

Represent it in graph:

A Y

A is called a parent of Y w.r.t. G, denoted as paG(Y ) ≡ pa(Y ); A
precedes Y in topological ordering in graphical language
A precedes Y in time in human language
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Definition of DAGs: Terminologies

▶ Graph: G = (V ,E ), a set of vertices/nodes (V ) and a set of edges
connecting the nodes (E )

▶ Edge: either undirected – or directed →,←
A Y

Figure: Either A causes Y or Y causes A

▶ Graphs with only (un)directed edges: (un)directed graphs

▶ Graphs with both directed and undirected edges: partially directed
graphs
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Definition of DAGs: More terminologies (paths family)

▶ path between nodes X and Y on G
any sequence of distinct nodes (X ,V1, · · · ,Vk ,Y ), k ≥ 0, such
that any two successive nodes are connected by an edge
e.g. X → V1 − V2 ← · · · ← Vk − Y

▶ causal path between X and Y : X → · · · → Y

▶ Causal path between X and Y and an edge Y → X form a directed
cycle

▶ Directed graphs without directed cycles are DAGs

▶ X = deG(Y ) ≡ de(Y ) if there is any causal path from Y to X

▶ X = anG(Y ) ≡ an(Y ) if there is any causal path from X to Y

▶ On a path, if Xi → Xj ← Xk , then Xj is a collider
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A quick quiz: is it possible X = an(Y ) and X = de(Y ) in a DAG?
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Examples of DAGs

▶ A causes Y

A Y

▶ A causes Y and X is a common cause (confounder) of A and Y

X A Y

▶ Observational studies with unmeasured/latent confounders:

X A Y

H

One potential disadvantage of DAG: unless we are crystally clear
about which important confounders are unmeasured, it is impossible
to draw such a DAG
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From DAGs without latent variables to probability
distribution (data)

Markov factorization of DAGs:

Definition 1

A probability density function f over the variables V is consistent with
DAG G = (V ,E ) (E is the set of all directed edges) if it factorizes
according to the following rule:

f (v) =
∏
Vi∈V

f
(
vi |paG(vi )

)
(1)
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IPW, interventional distribution and do calculus

Derive the IPW formula without using g-formula

What is the “physical” meaning of Y (1) or Y |do(A = 1)?

Observational study satisfying “no unmeasured confounding”

X A Y

By Markovian factorization of DAG,

p(X ,A,Y ) = p(Y |X ,A)p(A|X )p(X )

so when data is drawn from the above DAG, A is drawn from a
distribution with pdf/pmf p(A|X )
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IPW, interventional distribution and do calculus
Derive the IPW formula without using g-formula

What is the “physical” meaning of Y (1) or Y |do(A = 1)?

Observational study satisfying “no unmeasured confounding”

X A Y

do(A = 1) means intervening everybody’s A to 1; the distribution of
Y (1) or Y |do(A = 1) is the distribution Y under this interventional
distribution!

The interventional distribution:

p(X ,Y (1)) ≡ p(X ,do(A = 1),Y ) = p(Y |X ,do(A = 1))1{A = 1}p(X )

The DAG:

X do(A = 1) Y
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IPW, interventional distribution and do calculus

From the observed data distribution to the interventional distribution?

p(X ,A,Y ) = p(Y |X ,A)p(A|X )p(X ) vs.

p(X ,do(A = 1),Y ) = p(Y |X , do(A = 1))1{A = 1}p(X )

Change of probability distribution

p(X ,do(A = 1),Y ) =
1{A = 1}
p(A|X )

p(X ,A,Y ) =
A

p(A|X )
p(X ,A,Y )

So

E[Y (1)] ≡ E[Y |do(A = 1)] = E
[

A

p(A|X )
Y

]
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d-separation

▶ To read off (conditional) independence constraints implied by the
Markovian factorization, we need to introduce the following
d-separation graphical rule:

1. Between any two nodes X and Y , a set of nodes Z not
containing X and Y , a path p from X to Y is blocked by Z if
(1) there exists non-collider W ∈ Z also on p and (2) there
exists a collider V but no member of de(V ) is in Z ; otherwise,
Z does not block the path p

2. If Z blocks all paths between some disjoint subsets X and Y ,
then X is d-separated from Y given Z , denoted as X ⊥G Y |Z

▶ Examples:

A

S

L

U

R

S ⊥G R|U, A ̸⊥G U|S , A ̸⊥G U|L
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Another example: due to Verma

A0 L1 A1 L2

U

quiz: X = (A0,A1), Y = L2. Are X and Y d-separated given L1?

connection to science: can you think of a scientific story for Verma’s
constraint?
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d-separation and statistical independence

▶ When X ⊥G Y |Z , then for every distribution Markov factorized
according to G, X ⊥⊥ Y |Z , where ⊥⊥ stands for “statistical
independence”
– Soundness

▶ When X ̸⊥G Y |Z , then there exists a distribution Markov factorized
according to G, such that X ̸⊥⊥ Y |Z
– Completeness
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From DAG to causal DAG

▶ Causal DAG: DAG that contains all variables, observed or unobserved

▶ If all variables on a causal DAG are observed: “causal sufficiency”

▶ Lack of an arrow from node X to node Y : absence of a direct
causal effect from X to Y

▶ Any node is a cause of all its descendant; any node is caused by all
its ancestors

▶ Markov factorization implies:

Conditional on its direct causes/parents, node X is independent of any
node it does not cause (any non-descendant of X )
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Faithfulness

Recall:

▶ When X ⊥G Y |Z , then for every distribution Markov factorized
according to G, X ⊥⊥ Y |Z , where ⊥⊥ stands for “statistical
independence”
– Soundness

▶ When X ̸⊥G Y |Z , then there exists a distribution Markov factorized
according to G, such that X ̸⊥⊥ Y |Z
– Completeness

But in some application, one might hope X ̸⊥G Y |Z ⇒ X ̸⊥⊥ Y |Z

Does not always hold, how to proceed? Making such an assumption –
called “faithfulness”; we will come back to this when we talk about
causal discovery/structure learning (a lot of works on linear models done
by the statistics group from ETH Zürich)
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Causal DAG for RCT

Can you draw a causal DAG for RCT?

A Y

U
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Causal DAG for observational studies under ignorability

Can you draw a causal DAG for observational studies under ignorability?

A Y

U1 X U2
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Can you draw a causal DAG for observational studies under ignorability?

A Y

U1 X U2
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From causal graph to identification

▶ From last lecture, we have seen that identification is the process of
turning parameters defined via counterfactuals into parameters
defined via observables

▶ There are a set of rules that can assist you to derive if the average
causal effect of some node X to some other node Y can be
identified by speculating the causal DAG

▶ But they are not very convenient to use because there are no
counterfactuals on DAG!

▶ When causal graph theory was first introduced into the
statistics community, this is the very reason why Donald Rubin
and Guido Imbens (economist) are emphatically against the
adoption of DAG
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Backdoor criterion: identification rule 1 using DAG

A set of covariates X satisfies the backdoor criterion relative to A and Y
if all backdoor paths between A and Y are blocked given X and X does
not include descendants of A

X satisfies backdoor criterion ⇔ Y (a) ⊥⊥ A|X

Backdoor between A and Y : a path that starts with A← · · ·
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Front door criterion: identification rule 2 using DAG

▶ Can we identify E[Y (a)] in the DAG below?

A M Y

U

Yes! Front door criterion.
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▶ Can we identify E[Y (a)] in the DAG below?

A M Y

U

p(M(a)) = p(M|A = a)
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▶ Can we identify E[Y (a)] in the DAG below?

A M Y

U

p(Y (m)) =
∫
a
p(Y |M = m,A = a)p(a)da
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Front door criterion: identification rule 2 using DAG

▶ Can we identify E[Y (a)] in the DAG below?

A M Y

U

E[Y (a)] =
∫
y

∫
m
yp(Y (m) = y)p(M(a) = m)dmdy but can you see

why?
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SWIGs: putting counterfactuals on DAGs

Recall the three identification conditions

1. Consistency: Y =
∑

a Y (a)1{A = a}
2. Positivity/Overlap: 0 < Pr(A = a|X ) < 1 ∀a
3. Ignorability/Randomization: Y (a) ⊥⊥ A|X ∀a

SWIG for RCT: splitting treatment node, then all descendants become
counterfactuals

A a Y (a)

U

Reading independence: it is immediate Y (a) ⊥⊥ A because A and Y (a)
are d-separated
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SWIGs: putting counterfactuals on DAGs

SWIG for observational studies under ignorability

A a Y (a)

U1 X U2

Reading conditional independence (CI): it is immediate Y (a) ⊥⊥ A|X
because Y (a) ⊥Gswig A|X
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Front door with SWIG

A a M(a) Y (a) ≡ Y (a,M(a))

U

so we have (⋆) M(a) ⊥⊥ A

E[Y (a)] = E[E[Y (a)|M(a)]] =

∫
m

E[Y (a)|M(a) = m]f (M(a) = m)dm

(⋆)
=

∫
m

E[Y (a)|M(a) = m]f (M = m|A = a)dm

=

∫
m

E[Y (a,M(a))|M(a) = m]f (M = m|A = a)dm

consistency: by Y (a,M(a)) = Y (a,m) given M(a) = m

=

∫
m

E[Y (a,m)|M(a) = m]f (M = m|A = a)dm

now we need a SWIG by intervening both A and M
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Front door with SWIG

A a M(a) m Y (m)

U

so we have M(a) ⊥⊥ A and Y (m) ⊥⊥ M(a)

E[Y (a)] =

∫
m

E[Y (a,m)|M(a) = m]f (M = m|A = a)dm

=

∫
m

E[Y (m)|M(a) = m]f (M = m|A = a)dm

by no direct causal effect of A on Y

=

∫
m

E[Y (m)]f (M = m|A = a)dm

now we need a world by intervening M alone
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Front door with SWIG

A M m Y (m)

U

so we have (⋆) Y (m) ⊥⊥ M|A

E[Y (a)]

=

∫
m

E[Y (m)]f (M = m|A = a)dm

(⋆)
=

∫
m

EA[EY (m)[Y (m)|A,M = m]]f (M = m|A = a)dm

=

∫
m

EA[EY [Y |A,M = m]]f (M = m|A = a)dm

=

∫
m

{∫
a′

∫
y

yf (Y = y |A = a′,M = m)f (A = a′)da′dy

}
f (M = m|A = a)dm
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What the hell is “single world”-ness?

▶ By node splitting, A becomes A||a

▶ Say A ∈ {0, 1}, then if one is interested in two cases a = 0, a = 1,
need to draw two separate graphs

A a = 1 Y (1)

U1 X U2

A a = 0 Y (0)

U1 X U2

▶ Y (1) and Y (0) are never on the same graph! So the theory of SWIG
cannot be used to identify the joint distribution of (Y (1),Y (0))
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▶ By node splitting, A becomes A||a

▶ Say A ∈ {0, 1}, then if one is interested in two cases a = 0, a = 1,
need to draw two separate graphs
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No cross-world identification – feature or bug?

▶ What do you think? Not allowing cross-world identification, is it an
advantage or a disadvantage?

▶ Discuss among yourselves

▶ Pros: For causal inference in reality, we can never observe Y (1) and
Y (0) for one person so there is no way to estimate their joint
distribution without making assumptions

▶ Cons: For those taking causality as a much higher-level
meta-physical type of human inquiry, this is definitely limiting our
“imagination power”
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One more example of SWIG: Verma
Can we identify E[Y (a0, a1)] in the following complete Verma’s graph?

A0 L1 A1 Y

U

SWIG?

A0 a0 L1(a0) A1(a0) a1 Y (a0, a1)

U

Reading CI: Y (a0, a1) ⊥⊥ A0 and Y (a0, a1) ⊥⊥ A1(a0)|L1(a0),A0. We will
come back to this on Friday.



36/ 84



37/ 84



38/ 84

Non-Homework :-)

Read the following papers:
Richardson & Robins, Single world intervention graphs (148 pages);

Shpitser, Richardson & Robins, Multivariate Counterfactual Systems And
Causal Graphical Models (34 pages)

https://csss.uw.edu/files/working-papers/2013/wp128.pdf
https://arxiv.org/pdf/2008.06017
https://arxiv.org/pdf/2008.06017
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Sensitivity Analysis
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Sensitivity analysis

At the end of this lecture, let’s discuss what sensitivity analysis is

Sensitivity analysis is a technique very commonly used in applied math,
computational physics, or any area mathematical modeling is used: check
how our results change by perturbing some parameters in the model; it is
important for science

Have you done any sensitivity analysis yourself in your research?
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Basic idea of sensitivity analysis

What does sensitivity analysis protect against in causal inference?

Potential violation of identification conditions. Which one? Discuss

Randomization/Ignorability/No unmeasured confounding
REF: Cornfield et al. Smoking and lung cancer: recent evidence and a
discussion of some questions. JNCI (1959)

Smoking-Lung Cancer story

https://u.demog.berkeley.edu/~jrw/Biblio/Eprints/ A-C/cornfield.etal.2009.orig1959.pdf
https://u.demog.berkeley.edu/~jrw/Biblio/Eprints/ A-C/cornfield.etal.2009.orig1959.pdf
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Smoking-Lung Cancer Story

To make the story easier, we consider binary outcome (lung caner or
not), so Y ∈ {0, 1}

We further consider a new “causal measure” risk ratio (RR):
RR = E[Y (1)]/E[Y (0)] so RR = 1 means no causal effect

Doll and Hill (1950 BMJ): smoking-lung cancer RR under ignorability

RRobs
AY = Pr(Y=1|A=1)

Pr(Y=1|A=0) ≈ 9

Figure: Sir Austin Bradford Hill (1897-1991)
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Fisher’s dispute

Sir R.A. Fisher (founding father of statistics, also Donald B. Rubin’s
academic grand father) disagreed with Doll and Hill (Fisher 1957 BMJ)

Figure: Sir Ronald Fisher (1890-1962)

Fisher: “... cigarette-smoking and lung cancer, though not mutually
causative, are both influenced by a common cause U, in this case the
individual genotype.”

Can you draw Fisher’s DAG?
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Cornfield’s dispute of Fisher’s dispute

At the end of the world, two curmudgeons are still alive and they must be
statisticians...

Cornfield’s back-of-envelope calculation: if Fisher is right, then we need

RRAU ≥ RRAY ≈ 9

Geneticists: such smoking-genetic association is too strong to be realistic

Fisher is likely to be incorrect



44/ 84

Cornfield’s dispute of Fisher’s dispute

At the end of the world, two curmudgeons are still alive and they must be
statisticians...

Cornfield’s back-of-envelope calculation: if Fisher is right, then we need

RRAU ≥ RRAY ≈ 9

Geneticists: such smoking-genetic association is too strong to be realistic

Fisher is likely to be incorrect



44/ 84

Cornfield’s dispute of Fisher’s dispute

At the end of the world, two curmudgeons are still alive and they must be
statisticians...

Cornfield’s back-of-envelope calculation: if Fisher is right, then we need

RRAU ≥ RRAY ≈ 9

Geneticists: such smoking-genetic association is too strong to be realistic

Fisher is likely to be incorrect



44/ 84

Cornfield’s dispute of Fisher’s dispute

At the end of the world, two curmudgeons are still alive and they must be
statisticians...

Cornfield’s back-of-envelope calculation: if Fisher is right, then we need

RRAU ≥ RRAY ≈ 9

Geneticists: such smoking-genetic association is too strong to be realistic

Fisher is likely to be incorrect



45/ 84

How to get RRAU ≥ RRAY ?

Ignorability assumption (⋆): Y (a) ⊥⊥ A|U, U unmeasured

Observed RR:

RRobs
AY =

Pr(Y = 1|A = 1)

Pr(Y = 1|A = 0)
=

∑
u=0,1 Pr(Y = 1|A = 1,U = u)Pr(U = u|A = 1)∑
u=0,1 Pr(Y = 1|A = 0,U = u)Pr(U = u|A = 0)

Causal RR:

RR true
AY =

Pr(Y (1) = 1)

Pr(Y (0) = 1)
=

∑
u=0,1 Pr(Y (1) = 1|U = u)Pr(U = u)∑
u=0,1 Pr(Y (0) = 1|U = u)Pr(U = u)

(⋆)
=

∑
u=0,1 Pr(Y = 1|A = 1,U = u)Pr(U = u)∑
u=0,1 Pr(Y = 1|A = 0,U = u)Pr(U = u)
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Sensitivity analysis: can we bound RR true
AY by RRobs

AY ?

Two definitions: A− U association and U − Y (a) association by RR

RRAU :=
Pr(U = 1|A = 1)

Pr(U = 1|A = 0)

RRUY (a) := max

{
Pr(Y (a) = 1|U = 1)

Pr(Y (a) = 1|U = 0)
,
Pr(Y (a) = 1|U = 0)

Pr(Y (a) = 1|U = 1)

}
RRUY := max

{
RRUY (1),RRUY (0)

}
so we reduce the sensitivity parameters to two measures RRAU and RRUY

and they have nice interpretation

BOUND (REF: Ding, VanderWeele. Sensitivity analysis without
assumptions. Epidemiology (2017)): if RRobs

AY > 1

RRobs
AY

RR true
AY

≤ RRAURRUY

RRAU + RRUY − 1

https://arxiv.org/pdf/1507.03984.pdf
https://arxiv.org/pdf/1507.03984.pdf
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Proof sketch

Recall

RR true
AY =

∑
u=0,1 Pr(Y = 1|A = 1,U = u)Pr(U = u)∑
u=0,1 Pr(Y = 1|A = 0,U = u)Pr(U = u)

Introduce two new notation

RR true,+
AY =

∑
u=0,1 Pr(Y = 1|A = 1,U = u)Pr(U = u|A = 1)∑
u=0,1 Pr(Y = 1|A = 0,U = u)Pr(U = u|A = 1)

RR true,−
AY =

∑
u=0,1 Pr(Y = 1|A = 1,U = u)Pr(U = u|A = 0)∑
u=0,1 Pr(Y = 1|A = 0,U = u)Pr(U = u|A = 0)

With some algebra, one can show

RR true
AY = wRR true,+

AY + (1− w)RR true,−
AY

with
w =

∑
u=0,1 Pr(Y=1|A=0,U=u)Pr(U=u,A=1)∑

u=0,1 Pr(Y=1|A=0,U=u)Pr(U=u,A=1)+
∑

u=0,1 Pr(Y=1|A=0,U=u)Pr(U=u,A=0)
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Proof sketch

Similarly,(
RRobs

AY

RR true
AY

)−1

= w

(
RRobs

AY

RR true,+
AY

)−1

+ (1− w)

(
RRobs

AY

RR true,−
AY

)−1

Now

RRobs
AY

RR
true,+
AY

=

∑
u=0,1 Pr(Y=1|A=1,U=u)Pr(U=u|A=1)∑
u=0,1 Pr(Y=1|A=0,U=u)Pr(U=u|A=0)∑
u=0,1 Pr(Y=1|A=1,U=u)Pr(U=u|A=1)∑
u=0,1 Pr(Y=1|A=0,U=u)Pr(U=u|A=1)

=

∑
u=0,1 Pr(Y = 1|A = 0, U = u)Pr(U = u|A = 1)∑
u=0,1 Pr(Y = 1|A = 0, U = u)Pr(U = u|A = 0)

=
RRAUPr(U = 1|A = 0) (Pr(Y = 1|A = 0, U = 1) − Pr(Y = 1|A = 0, U = 0)) + Pr(Y = 1|A = 0, U = 0)

Pr(U = 1|A = 0) (Pr(Y = 1|A = 0, U = 1) − Pr(Y = 1|A = 0, U = 0)) + Pr(Y = 1|A = 0, U = 0)

=
RRAUPr(U = 1|A = 0)

(
RRUY (0) − 1

)
+ 1

Pr(U = 1|A = 0)
(
RRUY (0) − 1

)
+ 1

≤
RRAURRUY (0)

RRAU + RRUY (0) − 1

in the last step, maximized at RRAUPr(U = 1|A = 0) = 1.
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How to use such a bound?

RRAURRUY

RRAU + RRUY − 1︸ ︷︷ ︸
Bounding Factor (BF)

≥ RRobs
AY

RR true
AY

To reduce the observed RR to the hypothetical true causal RR (e.g. no
effect, taking value 1), BF needs to exceed RRobs

AY to explain away the
observed RR

Connect to Cornfield’s analysis?

Fact 1

a ≥ ab

a+ b − 1
if a ≥ 1

so RRAU ≥ BF and RRUY ≥ BF
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BF table
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E-value

VanderWeele, Ding. Sensitivity Analysis in Observational Research:
Introducing the E-Value. Annals of Internal Medicine (2017)
!!Also read the response letter and the authors’ rejoinder!!

E-value is nothing but imposing RRAU = RRUY = ρ as we do not really
know their value anyway

To explain away the observed RR, we need ρ2

2ρ−1 ≥ RRobs
AY , which gives us

the quadratic inequality: when RRobs
AY ≥ 1

ρ2 − 2RRobs
AY ρ+ RRobs

AY ≥ 0

⇒ ρ ≥ RRobs
AY +

√
RRobs

AY (RRobs
AY − 1)

What if RRobs
AY ≤ 1?

https://hrr.w.uib.no/files/2019/01/VanderWeeleDing_2017_e_-value.pdf
https://hrr.w.uib.no/files/2019/01/VanderWeeleDing_2017_e_-value.pdf
https://www.acpjournals.org/doi/full/10.7326/M18-2159
https://www.acpjournals.org/doi/abs/10.7326/M18-3112
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Other sensitivity analysis strategies

Most other sensitivity analysis strategies rely on further untestable
assumptions to argue against the untestable ignorability assumption

Under ignorability: p(Y (1) = y |X ,A = 1) ≡ p(Y (1) = y |X ,A = 0)

For example, one could postulate the following “exponential tilting
model”

p(Y (a) = y |X ,A = 1− a)

p(Y (a) = y |X ,A = a)
=

exp {γafa(y)}
E [exp {γafa(Y )} |X ,A = a]

With such a model, one immediately have

E[Y (a)] =

∫
x

{
E[Y |X = x ,A = a]Pr(A = a|X = x)

+E[Y exp{γafa(Y )}|X=x,A=a]
E[exp{γafa(Y )}|X=x,A=a] Pr(A = 1− a|X = x)

}
p(x)dx

and hence the ATE can be identified as

τ(γ0, γ1; f0, f1) = E[Y (1)]− E[Y (0)]
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Under ignorability: p(Y (1) = y |X ,A = 1) ≡ p(Y (1) = y |X ,A = 0)

For example, one could postulate the following “exponential tilting
model”

p(Y (a) = y |X ,A = 1− a)

p(Y (a) = y |X ,A = a)
=

exp {γafa(y)}
E [exp {γafa(Y )} |X ,A = a]

With such a model, one immediately have

E[Y (a)] =

∫
x

{
E[Y |X = x ,A = a]Pr(A = a|X = x)

+E[Y exp{γafa(Y )}|X=x,A=a]
E[exp{γafa(Y )}|X=x,A=a] Pr(A = 1− a|X = x)

}
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Floor discussion

Why do you think one postulate the sensitivity analysis model as

p(Y (a) = y |X ,A = 1− a)

p(Y (a) = y |X ,A = a)
=

exp {γafa(y)}
E [exp {γafa(Y )} |X ,A = a]

“Counterfactuals are the ultimate unmeasured confounder”
– REF: Robins et al. Sensitivity analyses for unmeasured confounding
assuming a marginal structural model for repeated measures. Stats in
Med (2004).

https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/brumback_sim04.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/brumback_sim04.pdf
https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/brumback_sim04.pdf
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In summary

In general there are two different strategies to perform sensitivity
analysis: one relatively more straightforward, one calling for deeper
theoretical analysis

▶ Given estimated causal effect, obtain the strength of unmeasured
confounding to explain away the effect (e.g. E-value type analysis,
becoming standard in medical practice and getting popular in
industry)

▶ Postulating a model that incorporates unmeasured confounding,
then estimate the causal effect using the most advanced statistical
methodology and see how the result changes with the sensitivity
parameter γ
If interested in further theory, take a look at:
REF: Scharfstein et al. Semiparametric Sensitivity Analysis:
Unmeasured Confounding in Observational Studies. 2021
and see how they developed the theoretical results for sensitivity
analysis

https://arxiv.org/pdf/2104.08300.pdf
https://arxiv.org/pdf/2104.08300.pdf
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Mediation analysis

▶ In lecture 1, we mentioned it is often not the end of the story after
we figure out if A causes Y

▶ In some applications, one might also be interested in the mechanism
of A causing Y

▶ The simplest scenario is as follows

A M Y

▶ Mechanistic question: does A directly cause Y or A causes Y
through M or both?

▶ Can you create a story based on this graph?
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Examples

▶ Medicine: A chemotherapy, Y 5-year survival, M tumor resistance

▶ Medicine: A blood pressure medication, Y heart attack, M blood
pressure

▶ Machine learning fairness: A gender, Y college admission, M
applying to department with lower admission rate
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mediation analysis: motivations

Mediation questions:

▶ You have a theory for why the effect of a treatment/exposure on the
outcome is mediated by > 1 variables

▶ You wish to frame your study in terms of causal questions, including
hypothetical interventions

Non-mediation questions:

▶ Is it better to intervene on the treatment or the mediator (if you
cannot do both)?

▶ What are the various effects of treatment?
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How would you proceed?

▶ Floor discussion

▶ Jamie Robins in his 1986 paper (g-formula) has defined the concept
direct and indirect effect

▶ Around the same time, Judea Pearl also started to consider direct
and indirect effect
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Zoo of direct and indirect effects

▶ Treatment A ∈ {0, 1}, Mediator M ∈ {0, 1}, Outcome Y

▶ Total effect of A on Y :

τtot := E[Y (1)− Y (0)] ≡ E[Y (1,M(1))− Y (0,M(0))]

▶ Controlled direct effect (CDE) of A on Y :

τcde(0) := E[Y (a = 1,m = 0)− Y (a = 0,m = 0)]

τcde(1) := E[Y (a = 1,m = 1)− Y (a = 0,m = 1)]

▶ Controlled direct effect (CDE) of M on Y :

τcie(0) := E[Y (a = 0,m = 1)− Y (a = 0,m = 0)]

τcie(1) := E[Y (a = 1,m = 1)− Y (a = 1,m = 0)]
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Warning about CDE

▶ CDE is NOT for mediation analysis, as we have discussed

▶ CDE is designed to answer questions like “the effect of intervening
both A and M”
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Zoo of direct and indirect effects
▶ Treatment A ∈ {0, 1}, Mediator M ∈ {0, 1}, Outcome Y

▶ Total effect of A on Y :

τtot := E[Y (1)− Y (0)] ≡ E[Y (1,M(1))− Y (0,M(0))]

▶ Natural direct effect (NDE) of A on Y : the part of τ that does not
go through M

τnde(0) := E[Y (1,M(0))− Y (0,M(0))]

τnde(1) := E[Y (1,M(1))− Y (0,M(1))]

▶ Natural indirect effect (NIE) of A on Y : the part of τ that does not
go through M

τnie(0) := E[Y (0,M(1))− Y (0,M(0))]

τnie(1) := E[Y (1,M(1))− Y (1,M(0))]
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Trivial decompositions

τtot = E[Y (1,M(1))− Y (0,M(0))] = τnde(1) + τnie(0)

τtot = E[Y (1,M(1))− Y (0,M(0))] = τnde(0) + τnie(1)
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Not so trivial 4-way decomposition: connections with
causal interactions (study on your own)

A less trivial but useful decomposition of the total effect τtot
REF: VanderWeele, A Unification of Mediation and Interaction: A 4-Way
Decomposition. Epidemiology (2014)

For simplicity, assume all variables are {0, 1}-valued

τtot = E[Y (1,M(1)) − Y (0,M(1))] + τnie(0)

= E[Y (1,M(0)) − Y (0,M(0))] + E[Y (1,M(1)) − Y (0,M(1)) − Y (1,M(0)) + Y (0,M(0))] + τnie(0)

= E[Y (1, 0) − Y (0, 0)] + E[Y (1,M(0)) − Y (0,M(0)) − Y (1, 0) + Y (0, 0)]

+ E[Y (1,M(1)) − Y (0,M(1)) − Y (1,M(0)) + Y (0,M(0))] + τnie(0)

= τcde(0) + E[Y (1,M(0)) − Y (0,M(0)) − Y (1, 0) + Y (0, 0)]

+ E[Y (1,M(1)) − Y (0,M(1)) − Y (1,M(0)) + Y (0,M(0))] + τnie(0).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.1147&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.1147&rep=rep1&type=pdf


64/ 84

Not so trivial 4-way decomposition: connections with
causal interactions (study on your own)

A less trivial but useful decomposition of the total effect τtot
REF: VanderWeele, A Unification of Mediation and Interaction: A 4-Way
Decomposition. Epidemiology (2014)

For simplicity, assume all variables are {0, 1}-valued

τtot = E[Y (1,M(1)) − Y (0,M(1))] + τnie(0)

= E[Y (1,M(0)) − Y (0,M(0))] + E[Y (1,M(1)) − Y (0,M(1)) − Y (1,M(0)) + Y (0,M(0))] + τnie(0)

= E[Y (1, 0) − Y (0, 0)] + E[Y (1,M(0)) − Y (0,M(0)) − Y (1, 0) + Y (0, 0)]

+ E[Y (1,M(1)) − Y (0,M(1)) − Y (1,M(0)) + Y (0,M(0))] + τnie(0)

= τcde(0) + E[Y (1,M(0)) − Y (0,M(0)) − Y (1, 0) + Y (0, 0)]

+ E[Y (1,M(1)) − Y (0,M(1)) − Y (1,M(0)) + Y (0,M(0))] + τnie(0).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.1147&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.1147&rep=rep1&type=pdf


65/ 84

E[Y (1,M(0))− Y (0,M(0))− Y (1, 0) + Y (0, 0)]

= E

[ ∑
m=0,1

{Y (1,m)− Y (0,m)}1{M(0) = m} − Y (1, 0) + Y (0, 0)

]

= E

[{ ∑
m=0,1

Y (1,m)− Y (0,m)− Y (1, 0) + Y (0, 0)

}
1{M(0) = 1}

]

= E

{Y (1, 1)− Y (0, 1)− Y (1, 0) + Y (0, 0)}︸ ︷︷ ︸
interaction between a and m

1{M(0) = 1}


︸ ︷︷ ︸

reference interaction
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E[Y (1,M(1))− Y (0,M(1))− Y (1,M(0)) + Y (0,M(0))]

= E

[ ∑
m=0,1

{Y (1,m)− Y (0,m)} {1{M(1) = m} − 1{M(0) = m}}

]

= E

{Y (1, 1)− Y (0, 1)− Y (1, 0) + Y (0, 0)}︸ ︷︷ ︸
interaction between a and m

{1{M(1) = 1} − 1{M(0) = 1}}


︸ ︷︷ ︸

mediated interaction

To summarize:

τtot = τcde(0) + reference interaction + mediated interaction + τnie(0)
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How to identify natural direct/indirect effect?

Consider NDE: τnde(0) := E[Y (1,M(0))− Y (0,M(0))]

E[Y (0,M(0))] ≡ E[Y (0)] by definition, easy to handle

But E[Y (1,M(0))] seems tricky to handle

Discuss why
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How to identify E[Y (1,M(0))]?

Mediation DAG with confounders

A M Y

X

REF: Pearl, Direct and indirect effects, UAI (2001) consider the following
ignorability conditions:

1. Y (a,m) ⊥⊥ A|X : no unmeasured treatment-outcome confounder

2. Y (a,m) ⊥⊥ M|{X ,A}: no unmeasured mediator-outcome confounder

3. M(a) ⊥⊥ A|X : no unmeasured treatment-mediator confounder

4. Y (a,m) ⊥⊥ M(a′)|X : will come back later

https://arxiv.org/pdf/1301.2300
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How to identify E[Y (1,M(0))]?
REF: Pearl, Direct and indirect effects, UAI (2001)

E[Y (1,M(0))]

= EX

[
EY (1,M(0)) [Y (1,M(0))|X ,M(0)]

]
=

∫
x

∫
m

{∫
y

yf (Y (1,M(0)) = y |X = x,M(0) = m)dy

}
f (X = x,M(0) = m)dmdx

=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x,M(0) = m)dy

}
f (M(0) = m|X = x)f (X = x)dmdx

4
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x)dy

}
f (M(0) = m|X = x)f (X = x)dmdx

3
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x)dy

}
f (M(0) = m|X = x,A = 0)f (X = x)dmdx

1
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x,A = 1)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

2
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x,A = 1,M = m)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

=

∫
x

∫
m

{∫
y

yf (Y = y |X = x,A = 1,M = m)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

=

∫
x

∫
m

E[Y |X = x,A = 1,M = m]f (M = m|X = x,A = 0)f (X = x)dmdx

https://arxiv.org/pdf/1301.2300
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yf (Y (1,m) = y |X = x,A = 1,M = m)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

=

∫
x

∫
m

{∫
y

yf (Y = y |X = x,A = 1,M = m)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

=

∫
x

∫
m

E[Y |X = x,A = 1,M = m]f (M = m|X = x,A = 0)f (X = x)dmdx

https://arxiv.org/pdf/1301.2300
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SWIG for mediation DAG

A a M(a) Y (a,M(a))

X

Issue: SWIG does not allow Y (a,M(a′)) on the graph for a ̸= a′ because
it is a cross-world counterfactual
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Philosophical forkpath

Based on the causal model defined via SWIG, impossible to identify NDE
or NIE because they are cross-world counterfactuals

SWIG-based causal model was defined in Robins 1986, called “Finest
Fully Randomized Causally Interpretable Structured Tree Graphs
(FFRCISTG)”

But Pearl’s theory says NDE and NIE are identified if one is willing to
assume cross-world independence assumption Y (a,m) ⊥⊥ M(a′)|X

Pearl’s causal model is called “Non-Parametric Structural Equation
Models with Independent Errors (NPSEM-IE)”

Therefore NPSEM ⊂ FFRCISTG
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Abstract difference between FFRCISTG vs. NPSEM-IE
Let’s look at the key difference between FFRCISTG vs. NPSEM-IE

FFRCISTG/SWIG
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Difference presented in math

· Pearl’s NPSEM-IE: for all variables V1, · · · ,VN on a causal DAG G:

V1 = f1(pa1; ε1)

...

VN = fN(paN ; εN)

s.t. {V1} ⊥⊥ {V2(xpa2);∀xpa2} ⊥⊥ · · · ⊥⊥ {VN(xpaN );∀xpaN}

· Robins’ FFRCISTG/SWIG: for all variables V1, · · · ,VN on a causal
DAG G:
for each xV : V1 ⊥⊥ V2(xpa2) ⊥⊥ · · · ⊥⊥ VN(xpaN )
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What to do without cross-world independence assumption?

When one cannot make further progress with the current definition, then
change the definition

Here comes “Interventional Direct/Indirect Effect (IDE/IIE)”:
REF: VanderWeele, Vansteelandt, Robins. Effect decomposition in the
presence of an exposure-induced mediator-outcome confounder.
Epidemiology (2014).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214081/pdf/nihms-637397.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214081/pdf/nihms-637397.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4214081/pdf/nihms-637397.pdf
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Definition of IDE/IIE
How do we change the definition(s)? Let’s look at the derivation of
E[Y (1,M(0))], where we use the cross-world independence condition (4)

E[Y (1,M(0))]

= EX

[
EY (1,M(0)) [Y (1,M(0))|X ,M(0)]

]
=

∫
x

∫
m

{∫
y

yf (Y (1,M(0)) = y |X = x,M(0) = m)dy

}
f (X = x,M(0) = m)dmdx

=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x,M(0) = m)dy

}
f (M(0) = m|X = x)f (X = x)dmdx

4
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x)dy

}
f (M(0) = m|X = x)f (X = x)dmdx

3
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x)dy

}
f (M(0) = m|X = x,A = 0)f (X = x)dmdx

1
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x,A = 1)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

2
=

∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x,A = 1,M = m)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

=

∫
x

∫
m

{∫
y

yf (Y = y |X = x,A = 1,M = m)dy

}
f (M = m|X = x,A = 0)f (X = x)dmdx

=

∫
x

∫
m

E[Y |X = x,A = 1,M = m]f (M = m|X = x,A = 0)f (X = x)dmdx
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Definition of IDE/IIE

Cross-world assumption is used, from E[Y (1,M(0))] to∫
x

∫
m

{∫
y

yf (Y (1,m) = y |X = x)dy

}
f (M(0) = m|X = x)f (X = x)dmdx

Let’s just define the latter as the parameter that we are interested in and
figure out its interpretation

Can you give a meaning to this quantity?

E
[
Y (1, M̃0|X )

]
where M̃0|X is a random draw from the probability distribution of M(0)|X
independent of everything else
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Definition of IDE/IIE

So we eventually define interventional direct and indirect effects as:

τide(0) := E
[
Y (1, M̃0|X )

]
− E

[
Y (0, M̃0|X )

]
τide(1) := E

[
Y (1, M̃1|X )

]
− E

[
Y (0, M̃1|X )

]
τiie(0) := E

[
Y (0, M̃1|X )

]
− E

[
Y (0, M̃0|X )

]
τiie(1) := E

[
Y (1, M̃1|X )

]
− E

[
Y (1, M̃0|X )

]

What do you think of this level of rigor when it comes to impose
scientific meaning to a parameter?
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Other related definitions of direct/indirect effects

Other than IDE/IIE, people have developed other definitions of
direct/indirect effects, but they all have similar spirit to IDE/IIE

Organic direct/indirect effect
REF: Lok, Bosch. Causal organic indirect and direct effects: closer to
Baron and Kenny. Epidemiology (2021).

Mediators are often difficult to even imagine an intervention (e.g. BMI)
so Y (a,m) is ill-defined
Organic DE/IE: hypothesize an organic intervention I on mediator that
does not have a direct effect on Y but M(0, I = 1)|X ∼ M(1)|X . Then,
for a = 0, 1

τode(a) := E[Y (1, I = a)− Y (0, I = a)]

τoie(a) := E[Y (a, I = 1)− Y (a, I = 0)]

https://arxiv.org/pdf/1903.04697.pdf
https://arxiv.org/pdf/1903.04697.pdf
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Interpretation of ODE/OIE

Example? A blood pressure drug, M blood pressure, Y heart attack
What is I?

I : Reduction in salt intake in diet; salt should only cause Y through M,
so no direct effect on Y
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Others: learn on your own

Separable effects:
REF: Robins, Richardson, Shpitser. An Interventionist Approach to
Mediation Analysis.
REF: Robins, Richardson. Alternative Graphical Causal Models and the
Identification of Direct Effects.
REF: Didelez. Defining causal mediation with a longitudinal mediator
and a survival outcome. Life Time Data Analysis (2019).

Population direct/indirect effect:
REF: Fulcher, Shpitser, Marealle, Tchetgen Tchetgen. Robust inference
on population indirect causal effects: The generalized front-door criterion.

https://arxiv.org/pdf/2008.06019.pdf
https://arxiv.org/pdf/2008.06019.pdf
https://csss.uw.edu/Papers/wp100.pdf
https://csss.uw.edu/Papers/wp100.pdf
https://link.springer.com/content/pdf/10.1007/s10985-018-9449-0.pdf
https://link.springer.com/content/pdf/10.1007/s10985-018-9449-0.pdf
https://arxiv.org/pdf/1711.03611.pdf
https://arxiv.org/pdf/1711.03611.pdf
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Path-specific effects
Mediation analysis is about delineating the mechanism of a causal effect

It can be further generalized: path-specific effects (identified by edge
g-formula)
REF: Avin, Shpitser, Pearl. Identifiability of path-specific effects. (2005)
REF: Shpitser, Pearl. Complete identification methods for the causal
hierarchy. JMLR (2008)
REF: Shpitser, Tchetgen Tchetgen. Causal inference with a graphical
hierarchy of interventions. AoS (2016).

X A M Y

L

Total effect τtot of A on Y can be decomposed into

τtot = τA→Y + τA→M→Y + τA→L→Y + τA→L→M→Y

https://escholarship.org/content/qt45x689gq/qt45x689gq.pdf
https://www.jmlr.org/papers/volume9/shpitser08a/shpitser08a.pdf
https://www.jmlr.org/papers/volume9/shpitser08a/shpitser08a.pdf
https://arxiv.org/abs/1411.2127
https://arxiv.org/abs/1411.2127
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Next time

Time-varying causal inference, (Optimal) dynamic treatment regimes,
dynamic regime SWIG

Here dynamic treatment does not necessarily mean treatment at multiple
points; it is a term opposite to “static treatment” such as A = 1; An
example of dynamic treatment is
A = 1{blood pressure > 200, age < 60}

Both of the above treatment examples are loosely called “hard
intervention” according to Pearl and many other people

“Soft intervention” loosely means stochastic treatment regimes, e.g.
A ∼ Bernoulli(softmax (blood pressure))
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Any Questions?


